
Eingereicht von
Hui Huang

Angefertigt am
Institut für Algebra

Betreuer und
Erstbeurteiler
Univ.-Prof. Dr.
Manuel Kauers

Zweitbeurteiler
Prof. Dr. Ziming Li

Mitbetreuung
Prof. Dr. Ziming Li

Januar 2017

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Definite Sums of
Hypergeometric Terms
and Limits of
P-Recursive Sequences

Dissertation
zur Erlangung des akademischen Grades

Doktorin der Naturwissenschaften

im Doktoratsstudium

Naturwissenschaften





Definite Sums of

Hypergeometric Terms

and

Limits of P-Recursive Sequences

Hui Huang

Doctoral Thesis

Institute for Algebra
Johannes Kepler University Linz

advised by
Univ.-Prof. Dr. Manuel Kauers

Prof. Dr. Ziming Li

examined by
Univ.-Prof. Dr. Manuel Kauers

Prof. Dr. Ziming Li

The research was partially funded by the Austrian Science Fund (FWF):
W1214-N15, project DK13.





Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche
kenntlich gemacht habe.
Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdoku-
ment identisch.

Linz, im Januar 2017 Hui Huang





Abstract

The ubiquity of the class of D-finite functions and P-recursive sequences in sym-
bolic computation is widely recognized. This class is defined in terms of linear
differential and difference equations with polynomial coefficients. In this thesis,
the presented work consists of two parts related to this class.

In the first part, we generalize the reduction-based creative telescoping al-
gorithms to the hypergeometric setting. This generalization allows to deal with
definite sums of hypergeometric terms more quickly.

The Abramov-Petkovšek reduction computes an additive decomposition of
a given hypergeometric term, which extends the functionality of Gosper’s algo-
rithm for indefinite hypergeometric summation. We modify this reduction so as
to decompose a hypergeometric term as the sum of a summable term and a non-
summable one. Properties satisfied by the output of the original reduction carry
over to our modified version. Moreover, the modified reduction does not solve any
auxiliary linear difference equation explicitly.

Based on the modified reduction, we design a new algorithm to compute mini-
mal telescopers for bivariate hypergeometric terms. This new algorithm can avoid
the costly computation of certificates, and outperforms the classical Zeilberger
algorithm no matter whether certificates are computed or not according to the
computational experiments.

We further employ a new argument for the termination of the above new al-
gorithm, which enables us to derive order bounds for minimal telescopers. Com-
pared to the known bounds in the literature, our bounds are sometimes better,
and never worse than the known ones.

In the second part of the thesis, we study the class of D-finite numbers, which
is closely related to D-finite functions and P-recursive sequences. It consists of
the limits of convergent P-recursive sequences. Typically, this class contains many
well-known mathematical constants in addition to the algebraic numbers. Our
definition of the class of D-finite numbers depends on two subrings of the field of
complex numbers. We investigate how different choices of these two subrings affect
the class. Moreover, we show that D-finite numbers over the Gaussian rational
field are essentially the same as the values of D-finite functions at non-singular
algebraic number arguments (so-called the regular holonomic constants). This
result makes it easier to recognize certain numbers as belonging to this class.
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Zusammenfassung

Die Allgegenwart der Klasse der D-finiten Funktionen und der P-rekursiven Fol-
gen im Gebiet des Symbolischen Rechnens ist allgemein bekannt. Diese Klasse ist
definiert durch lineare Differential- und Differenzengleichungen mit polynomiellen
Koeffizienten. Die Ergebnisse dieser Arbeit bestehen aus Teilen, die mit dieser
Klasse zu tun haben.

Im ersten Teil verallgemeinern wir die reduktions-basierten Algorithmen für
creative telescoping auf den hypergeometrischen Fall. Diese Verallgemeinerung
erlaubt eine effizientere Behandlung von definiten Summen hypergeometrischer
Terme.

Die Abramov-Petkovšek-Reduktion berechnet eine additive Zerlegung eines
gegebenen hypergeometrischen Terms, durch die die Funktionalität des Gosper-
Algorithmus für indefinite hypergeometrische Summen erweitert. Wir adaptieren
diese Reduktion so, dass sie einen hypergeometrischen Term in einen summier-
baren und einen nichtsummierbaren Term zerlegt. Eigenschaften des Outputs
der ursprünglichen Zerlegung bleiben für unsere modifizierte Version erhalten.
Darüber hinaus braucht man bei der modifizierten Reduktion keine lineare Hilf-
srekurrenz explizit zu lösen.

Ausgehend von der modifizierten Reduktion entwickeln wir einen neuen Al-
gorithmus zur Berechnung minimaler Telescoper für bivariate hypergeometrische
Terme. Dieser neue Algorithmus can die teure Berechnung von Zertifikaten ver-
meiden, und gemäß unserer Experimente läuft er schneller als der klassische
Zeilberger-Algorithmus, egal ob man Zertifikate mitberechnet oder nicht.

Wir verwenden außerdem ein neues Argument für die Terminierung der genan-
nten neuen Algorithmen, das es uns erlaubt, Schranken für die Ordnung des
minimalen Telescopers herzuleiten. Verglichen mit den bekannten Schranken in
der Literatur sind unsere Schranken manchmal besser und nie schlechter als die
bekannten.

Im zweiten Teil der Arbeit untersuchen wir die Klasse der D-finiten Zahlen, die
eng verwandt mit D-finiten Funktionen und P-rekursiven Folgen ist. Sie besteht
aus den Grenzwerten der konvergenten P-rekursiven Folgen. Typischerweise en-
thält diese Klasse neben den algebraischen Zahlen viele weitere bekannte math-
ematische Konstanten. Unsere Definition der Klasse der D-finiten Zahlen hängt
von zwei Unterringen des Körpers der komplexen Zahlen ab. Wir untersuchen,
wie die Klasse von der Wahl dieser zwei Unterringe abhängt. Außerdem zeigen
wir, dass die D-finiten Zahlen über dem Körper der Gaußschen rationalen Zahlen
im wesentlichen dieselben Zahlen sind, die auch als Werte von D-finiten Funk-
tionen an nicht-singulären algebraischen Argumenten auftreten (die sogenannten
regulären holonomen Konstanten). Dieses Resultat erleichtert es, gewisse Zahlen
als Elemente der Klasse zu erkennen.
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Chapter 1

Introduction

1.1 Background and motivation

Using computer instead of human thought is one of the main themes in the study
of symbolic computation for the past century. In particular, finding algorithmic
solutions for problems about special functions is one of the very popular topics
nowadays.

As an especially attractive class of special functions, D-finite functions have
been recognized long ago [59, 45, 70, 57, 46, 60]. They are interesting on the one
hand because each of them can be easily described by a finite amount of data, and
efficient algorithms are available to do exact as well as approximate computations
with them. On the other hand, the class is interesting because it covers a lot of
special functions which naturally appear in various different context, both within
mathematics as well as in applications.

The defining property of a D-finite function is that it satisfies a linear differ-
ential equation with polynomial coefficients. This differential equation, together
with an appropriate number of initial terms, uniquely determines the function at
hand. Similarly, a sequence is called P-recursive (or rarely, D-finite) if it satisfies
a linear recurrence equation with polynomial coefficients. Also in this case, the
equation together with an appropriate number of initial terms uniquely determine
the object.

The set of P-recursive sequences covers a lot of important combinatorial se-
quences, including C-finite sequences, hypergeometric terms and sequences whose
generating functions are algebraic (called algebraic sequences in this thesis).
Rather than talking about sequences themselves, our main interest focus on their
definite sums and limits. This thesis is divided into two components.

⋆ ⋆ ⋆ ⋆ ⋆

Part I. Hypergeometric terms. The set of hypergeometric terms is a basic
and powerful class of P-recursive sequences. It is defined to be the nonzero so-
lutions of first-order (partial) difference equations with polynomial coefficients.

1



2 Chapter 1. Introduction

Many familiar functions are hypergeometric terms, for instance, nonzero rational
functions, exponential functions, factorial terms, binomial coefficients, etc. In the
study of symbolic summation, there are mainly two kinds of problems related to
hypergeometric terms.

Problem 1.1 (Hypergeometric summation). Investigate whether or not the fol-
lowing sum is expressible in simple “closed form”,

𝑏∑︁
𝑘=𝑎

𝑓(𝑛, 𝑘), 𝑓(𝑛, 𝑘) is a bivariate hypergeometric term in 𝑛, 𝑘, (1.1)

where 𝑎, 𝑏 are fixed constants independent of all variables. By a closed form, we
mean a linear combination of a fixed number of hypergeometric terms, where the
fixed number must be a constant independent of all variables.

Problem 1.2 (Hypergeometric identities). Prove the following identity

𝑏∑︁
𝑘=𝑎

𝑓(𝑛, 𝑘) = ℎ(𝑛), 𝑓(𝑛, 𝑘) is a bivariate hypergeometric term in 𝑛, 𝑘, (1.2)

where 𝑎, 𝑏 are fixed constants independent of all variables, and ℎ(𝑛) is a known
univariate function.

Analogous to the first fundamental theorem of calculus, Problem 1.1 could
be solved in terms of indefinite summation provided that there exists a so-called
“anti-difference”. More precisely, we compute a hypergeometric term 𝑔(𝑛, 𝑘) such
that

𝑓(𝑛, 𝑘) = 𝑔(𝑛, 𝑘 + 1) − 𝑔(𝑛, 𝑘),

and then Problem 1.1 easily follows by the telescoping sum technique. To our
knowledge, the first complete algorithm for indefinite summation was designed
by Gosper [36] in 1978, namely the famous Gosper’s algorithm. To address the
case when Gosper’s algorithm is not applicable, i.e., there exists no such 𝑔, Wilf
and Zeilberger developed a constructive theory in a series of articles [65, 66, 67,
68, 69, 70, 71] in early 1990s. This theory came to be known as Wilf-Zeilberger’s
theory, whose main idea is to construct a so-called telescoper for 𝑓 to derive a
difference equation with polynomial coefficients satisfied by (1.1), and then apply-
ing Petkovšek’s algorithm [53], which detects the existence of the hypergeometric
terms solutions, to this equation gives the final answer for Problem 1.1.

On the other hand, Wilf-Zeilberger’s theory also works for Problem 1.2. To be
precise, after deriving a difference equation satisfied by the left-hand side of (1.2)
from a telescoper as for Problem 1.1, we verify that ℎ satisfies the same equation
and then (1.2) easily follows by checking the initial values.

Wilf-Zeilberger’s theory not only provides an algorithmic method to solve
the problems about hypergeometric summations or identities, but also gives a
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constructive way to find new combinatorial identities. In terms of algorithms,
Wilf-Zeilberger’s theory is a strong fundamental tool for combinatorics and also
the theory of special functions.

From the above discussion, one sees that the key step of Wilf-Zeilberger’s the-
ory is to construct a telescoper. This process is referred to as creative telescoping.
To be more specific, for a bivariate hypergeometric term 𝑓(𝑛, 𝑘), the task con-
sists in finding some nonzero recurrence operator 𝐿 and another hypergeometric
term 𝑔 such that

𝐿 · 𝑓(𝑛, 𝑘) = 𝑔(𝑛, 𝑘 + 1) − 𝑔(𝑛, 𝑘). (1.3)

It is required that the operator 𝐿 does not contain 𝑘 or the shift operator 𝜎𝑘,
i.e., it must have the form 𝐿 = 𝑒0 + 𝑒1𝜎𝑛 + · · · + 𝑒𝜌𝜎

𝜌
𝑛 for some 𝑒0, . . . , 𝑒𝜌 that

only depend on 𝑛. If 𝐿 and 𝑔(𝑛, 𝑘) are as above, we say that 𝐿 is a telescoper
for 𝑓(𝑛, 𝑘), and 𝑔(𝑛, 𝑘) is a certificate for 𝐿.

As outlined in the introduction of [19], we can distinguish four generations of
creative telescoping algorithms.

The first generation [29, 70, 54, 27] dates back to the 1940s, and the
algorithms were based on elimination techniques. The second generation [69,
11, 71, 54] started with what is now known as Zeilberger’s (fast) algorithm. The
algorithms of this generation use the idea of augmenting Gosper’s algorithm for
indefinite summation (or integration) by additional parameters 𝑒0, . . . , 𝑒𝜌 that are
carried along during the calculation and are finally instantiated, if at all possible,
such as to ensure the existence of a certificate 𝑔 in (1.3). These algorithms have
been implemented in many computer algebra programs, for example Maple [5]
and Mathematica [52]. See [54] for details about the first two generations.

The third generation [49, 12] was initiated by Apagodu and Zeilberger. In a
sense, they applied a second-generation algorithm by hand to a generic input and
worked out the resulting linear system of equations for the parameters 𝑒0, . . . , 𝑒𝜌

and the coefficients inside the certificate 𝑔. Their algorithm then merely consists
in solving this system. This approach is interesting not only because it is easier
to implement and tends to run faster than earlier algorithms, but also because it
is easy to analyze. In fact, the analysis of algorithms from this family gives rise to
the best output size estimates for creative telescoping known so far [20, 21, 22]. A
disadvantage is that these algorithms may not always find the smallest possible
output.

The fourth generation of the creative telescoping algorithms, so-called
reduction-based algorithms, originates from [14]. The basic idea behind these
algorithms is to bring each term 𝜎𝑖

𝑛𝑓 of the left-hand side of (1.3) into some
kind of normal form modulo all terms that are differences of other terms. Then
to find 𝑒0, . . . , 𝑒𝜌 amounts to finding a linear dependence among these normal
forms. The key advantage of this approach is that it separates the computation
of the 𝑒𝑖 from the computation of 𝑔. This is interesting because a certificate is not
always needed, and it is typically much larger (and thus computationally more
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expensive) than the telescoper, so we may not want to compute it if we don’t have
to. With previous algorithms there was no way to obtain telescopers without also
computing the corresponding certificates, but with fourth generation algorithms
there is. So far this approach has only been worked out for several instances in
the differential case [14, 16, 15]. The goal of the first part of the present thesis is
to give a fourth-generation algorithm for the shift case, namely for the classical
setting of hypergeometric telescoping.

⋆ ⋆ ⋆ ⋆ ⋆

Part II. D-finite numbers. In a sense, the theory of D-finite functions gen-
eralizes the theory of algebraic functions. Many concepts that have first been
introduced for the latter have later been formulated also for the former. In par-
ticular, every algebraic function is D-finite (Abel’s theorem), and many properties
the class of algebraic function enjoys carry over to the class of D-finite functions.

The theory of algebraic functions in turn may be considered as a generaliza-
tion of the classical and well-understood class of algebraic numbers. The class of
algebraic numbers suffers from being relatively small. There are many important
numbers, most prominently the numbers e and 𝜋, which are not algebraic.

Many larger classes of numbers have been proposed, let us just mention three
examples. The first is the class of periods (in the sense of Kontsevich and Za-
gier [43]). These numbers are defined as the values of multivariate definite in-
tegrals of algebraic functions over a semi-algebraic set. In addition to all the
algebraic numbers, this class contains important numbers such as 𝜋, all zeta
constants (the Riemann zeta function evaluated at an integer) and multiple zeta
values, but it is so far not known whether for example e, 1/𝜋 or Euler’s constant 𝛾
are periods (conjecturally they are not). The second example is the class of all
numbers that appear as values of so-called G-functions (in the sense of Siegel [58])
at algebraic number arguments [30, 31]. The class of G-functions is a subclass of
the class of D-finite functions, and it inherits some useful properties of that class.
Among the values that G-functions can assume are 𝜋, 1/𝜋, values of elliptic inte-
grals and multiple zeta values, but it is so far not known whether for example e,
Euler’s constant 𝛾 or a Liouville number are such a value (conjecturally not).

Another class of numbers is the class of holonomic constants, studied by
Flajolet and Vallée [35, §4]. (We thank Marc Mezzarobba for pointing us to this
reference.) A number is holonomic if it is equal to the (finite) value of a D-finite
function at an algebraic point. The number is further called a regular holonomic
constant if the evaluation point is an ordinary point of the defining differential
equation of the given D-finite function; otherwise it is called a singular holonomic
constant. Typical examples of the regular holonomic constants are 𝜋, log(2), e and
the polylogarithmic value Li4(1/2); while several famous constants like Apéry’s
constant 𝜁(3), Catalan’s constant G are of singular type.

It is tempting to believe that there is a strong relation between holonomic
constants and limits of convergent P-recursive sequences. To make this relation
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precise, we introduce the class of D-finite numbers in this thesis. Let 𝑅 be a
subring of C and F be a subfield of C. A complex number 𝜉 is called D-finite
(w.r.t. 𝑅 and F) if it is the limit of a convergent sequence in 𝑅N which is P-
recursive over F. We denote by 𝒟𝑅,F the set of all D-finite numbers with respect
to 𝑅 and F.

It is clear that 𝒟𝑅,F contains all the elements of 𝑅, but it typically contains
many further elements. For example, let 𝑖 be the imaginary unit, then 𝒟Q(𝑖)
contains many (if not all) the periods and, as we will see below, many (if not
all) the values of G-functions. In addition, it is not hard to see that e and 1/𝜋
are D-finite numbers. According to Fischler and Rivoal’s work [31], also Euler’s
constant 𝛾 and any value of the Gamma function at a rational number are D-
finite. (We thank Alin Bostan for pointing us to this reference.)

The definition of D-finite numbers given above involves two subrings of C as
parameters: the ring to which the sequence terms of the convergent sequences are
supposed to belong, and the field to which the coefficients of the polynomials in
the recurrence equations should belong. Obviously, these choices matter, because
we have, for example, 𝒟R,R = R ̸= C = 𝒟C,C. Also, since 𝒟Q,Q is a countable set,
we have 𝒟Q,Q ̸= 𝒟R,R. On the other hand, different choices of 𝑅 and F may lead
to the same classes. For example, we would not get more numbers by allowing F
to be a subring of C rather than a field, because we can always clear denominators
in a defining recurrence. One of our goals is to investigate how 𝑅 and F can be
modified without changing the resulting class of D-finite numbers.

As a long-term goal, we hope to establish the notion of D-finite numbers as a
class that naturally relates to the class of D-finite functions in the same way as
the classical class of algebraic numbers relates to the class of algebraic functions.

1.2 Main results and outline

This section is intended to provide an outline of the thesis and the main results.
In Chapter 2, we recall basic notions and facts about hypergeometric terms.
In Chapter 3, our starting point is the Abramov-Petkovšek reduction for hy-

pergeometric terms introduced in [7, 10]. Unfortunately the reduced forms ob-
tained by this reduction are not sufficiently “normal” for our purpose. Therefore,
we present a modified version of the reduction process, which does not solve
any auxiliary linear difference equation explicitly like the original one and to-
tally separates the summable and non-summable parts of a given hypergeometric
term. The outputs of the Abramov-Petkovšek reduction and our modified version
share the same required properties. According to the experimental comparison,
the modified reduction is also more efficient than the original one.

Chapter 4 is mainly used to connect univariate hypergeometric terms with
bivariate ones for later use. We explore some important properties of discrete
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residual forms by means of rational normal forms [10]. Furthermore, we show that
the residual forms are well-behaved with respect to taking linear combinations.

We translate terminology concerning univariate hypergeometric terms to bi-
variate ones in Chapter 5. Based on the modified version of Abramov-Petkovšek
reduction in Chapter 3, we present a new algorithm to compute minimal telescop-
ers for bivariate hypergeometric terms. This new algorithm keeps the key feature
of the fourth generation, that is, it separates the computations of telescopers and
certificates. Experimental results illustrate that the new algorithm is faster than
the classical Zeilberger’s algorithm if it returns a normalized certificate; and the
new algorithm is much more efficient if it omits certificates.

In Chapter 6, we present a new argument for the termination of the new
algorithm in Chapter 5. This new argument provides an independent proof of the
existence of telescopers and even enables us to obtain upper and lower bounds
for the order of minimal telescopers for hypergeometric terms. Compared to the
known bounds in the literature, our bounds are sometimes better and never worse
than the known ones. Moreover, we present a variant of the new algorithm by
combining our bounds, which improves the new algorithm in some special cases.

In Chapter 7, we review basic notions and useful properties of the class of
D-finite functions and P-recursive sequences mainly from [34, 41].

In Chapter 8, we study the class of D-finite numbers, defined as the limits of
convergent P-recursive sequences. In general, this class is much larger than the
class of algebraic numbers. The definition of the class depends on two subrings
of the field of complex numbers. We investigate the possible choices of these
two subrings that keep the class unchanged. Moreover, we connect this class
with the class of holonomic constants [35] and show that D-finite numbers over
the Gaussian rational field are essentially the same as the regular holonomic
constants. With this result, certain numbers are easily recognized as belonging
to this class, including many periods as well as many values of G-functions.

1.3 Remarks

The main results in Chapters 3 – 5 are joint work with S. Chen, M. Kauers and
Z. Li, which have been published in [19]. The main results in Chapter 6 were
published in [38]. The main results in Chapter 8 are joint work with M. Kauers,
and are in preparation [39].
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Chapter 2

Hypergeometric Terms

In this chapter, we recall basic notions and facts on difference rings (fields) and
hypergeometric terms. In addition, we review the context of summability and
multiplicative decomposition for hypergeometric terms. These topics are well-
known and more details can be found in [50, 28].

2.1 Basic concepts

Let F be a field of characteristic zero, and F(𝑘) be the field of rational functions
in 𝑘 over F. Let 𝜎𝑘 be the automorphism that maps 𝑟(𝑘) to 𝑟(𝑘 + 1) for every
rational function 𝑟 ∈ F(𝑘). The pair (F(𝑘), 𝜎𝑘) is called a difference field. A
difference ring extension of (F(𝑘), 𝜎𝑘) is a ring D containing F(𝑘) together with a
distinguished endomorphism 𝜎𝑘 : D → D whose restriction to F(𝑘) agrees with the
automorphism defined before. An element 𝑐 ∈ D is called a constant if 𝜎𝑘(𝑐) = 𝑐.
It is readily seen that all constants in D form a subring of D, denoted by 𝐶𝜎𝑘,D.
In particular, 𝐶𝜎𝑘,D is a field whenever D is one. Moreover, we have 𝐶𝜎𝑘,F(𝑘) = F
according to [9, Theorem 2]. In other words, the set of all constants in F(𝑘)
w.r.t. 𝜎𝑘 is exactly the field F.

Throughout the thesis, for a polynomial 𝑝 ∈ F[𝑘], its degree and leading
coefficient are denoted by deg𝑘(𝑝) and lc𝑘(𝑝), respectively. For convenience, we
define the degree of zero to be −∞.

Definition 2.1. Let D be a difference ring extension of F(𝑘). A nonzero ele-
ment 𝑇 ∈ D is called a hypergeometric term over F(𝑘) if it is invertible and
𝜎𝑘(𝑇 ) = 𝑟𝑇 for some 𝑟 ∈ F(𝑘). We call 𝑟 the shift-quotient of 𝑇 w.r.t. 𝑘.

In the following two chapters, whenever we mention hypergeometric terms,
they always belong to some difference ring extension D of F(𝑘), unless specified
otherwise.

Example 2.2. All nonzero rational functions are hypergeometric. Moreover, the
following two classes of combinatorial functions are also hypergeometric.

9



10 Chapter 2. Hypergeometric Terms

1. (Exponential functions). 𝑇 = 𝑐𝑘 where 𝑐 ∈ F ∖ {0}. The shift-quotient of 𝑇
is 𝜎𝑘(𝑇 )/𝑇 = 𝑐.

2. (Factorial terms). 𝑇 = (𝑎𝑘)! with 𝑎 ∈ N and 𝑎 > 0. The shift-quotient of 𝑇
is 𝜎𝑘(𝑇 )/𝑇 = (𝑎𝑘 + 𝑎)(𝑎𝑘 + 𝑎− 1) · · · (𝑎𝑘 + 1).

One can easily show that the product of hypergeometric terms and the recip-
rocal of a hypergeometric term are again hypergeometric. However, the sum of
hypergeometric terms is not necessarily hypergeometric. For example, 2𝑘 + 1 is
not a hypergeometric term although 2𝑘 and 1 both are; otherwise we would have
(2𝑘+1 + 1)/(2𝑘 + 1) ∈ F(𝑘), and then a straightforward calculation would yield
that 2𝑘 ∈ F(𝑘), a contradiction.

Recall [50, 54] that two hypergeometric terms 𝑇1, 𝑇2 over F(𝑘) are called
similar if there exists a rational function 𝑟 ∈ F(𝑘) such that 𝑇1 = 𝑟𝑇2. This
is an equivalence relation and all rational functions form one equivalence class.
By Proposition 5.6.2 in [54], the sum of similar hypergeometric terms is either
hypergeometric or zero.

2.2 Hypergeometric summability

Analogous to indefinite integrals of elementary functions in calculus, we consider
indefinite sums of hypergeometric terms in shift case. More precisely, given a
hypergeometric term 𝑇 (𝑘), we compute another hypergeometric term 𝐺(𝑘) such
that

𝑇 (𝑘) = 𝐺(𝑘 + 1) −𝐺(𝑘).
This motivates the notion of hypergeometric summability.

Definition 2.3. A univariate hypergeometric term 𝑇 over F(𝑘) is called hyper-
geometric summable, if there exists another hypergeometric term 𝐺 such that

𝑇 = Δ𝑘(𝐺), where Δ𝑘 denotes the difference of 𝜎𝑘 and the identity map.

We call 𝐺 an indefinite summation (or anti-difference) of 𝑇 . If 𝑇 and 𝐺 are both
rational functions, we also say 𝑇 is rational summable.

We abbreviate “hypergeometric summable” as “summable” in this thesis.

Example 2.4. All polynomials are summable. Moreover, we see that 𝑘 · 𝑘! is
summable since 𝑘 ·𝑘! = Δ𝑘(𝑘!), but 𝑘! is not which will be shown in Example 3.7.

To solve the problem of indefinite summation, Gosper [36] developed a first
complete algorithm which is known as Gosper’s algorithm. This is a determin-
istic procedure. It determines whether or not the input hypergeometric term is
summable, and then returns an indefinite summation if the answer is yes. The
basic idea is to reduce the summation problem to finding polynomial solutions of
a first-order difference equation with polynomial coefficients.
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2.3 Multiplicative decomposition

By [7, 10], every hypergeometric term admits a multiplicative decomposition.
This enables us to analyze a hypergeometric term by rational functions. To recall
it, let us first review the notion of shift-free polynomials and shift-reduced rational
functions [7, §1].

Definition 2.5. A nonzero polynomial 𝑝 ∈ F[𝑘] is said to be shift-free if for any
nonzero integer 𝑖, we have gcd(𝑝, 𝜎𝑖

𝑘(𝑝)) = 1.

Consequently, no two distinct roots of a shift-free polynomial differ by an
integer. The following lemma indicates the relation between shift-freeness and
rational summability, whose proof can be found in [1, Proposition 1].

Lemma 2.6. Let 𝑓 = 𝑝/𝑞 be a rational function in F(𝑘), where 𝑝, 𝑞 ∈ F[𝑘] are
coprime and deg𝑘(𝑝) < deg𝑘(𝑞). Further assume that 𝑞 is shift-free. If there exists
a rational function 𝑟 ∈ F(𝑘) such that 𝑓 = Δ𝑘(𝑟), then 𝑓 = 0.

Definition 2.7. A nonzero rational function 𝑓 = 𝑝/𝑞 ∈ F(𝑘) with 𝑝, 𝑞 ∈ F[𝑘]
coprime, is said to be shift-reduced if for any integer 𝑖, we have gcd(𝑝, 𝜎𝑖

𝑘(𝑞)) = 1.

Some basic properties of shift-reduced rational functions are given below.

Lemma 2.8. Let 𝑓 ∈ F(𝑘) be shift-reduced.
(i) If there exists a nonzero rational function 𝑟 ∈ F(𝑘) such that 𝑓 = 𝜎𝑘(𝑟)/𝑟,

then 𝑟 ∈ F and thus 𝑓 = 1.
(ii) If 𝑓 ̸= 1 and there exists 𝑟 ∈ F[𝑘] such that 𝑓𝜎𝑘(𝑟) − 𝑟 = 0, then 𝑟 = 0.

Proof. (i) Suppose that 𝑟 = 𝑠/𝑡 ∈ F(𝑘) ∖ F, where 𝑠, 𝑡 are coprime and at least
one of them does not belong to F. W.l.o.g., we assume that 𝑠 /∈ F. Then
there exists a nontrivial factor 𝑝 ∈ F[𝑘] of 𝑠 such that deg𝑘(𝑝) > 0. Let

ℓ = min{𝑘 ∈ Z : 𝜎𝑘
𝑘(𝑝) | 𝑠} and 𝑚 = max{𝑘 ∈ Z : 𝜎𝑘

𝑘(𝑝) | 𝑠}.

It follows that 𝑚, ℓ ≥ 0 and
• 𝜎−ℓ

𝑘 (𝑝) | 𝑠 but 𝜎−ℓ
𝑘 (𝑝) - 𝜎𝑘(𝑠);

• 𝜎𝑚+1
𝑘 (𝑝) | 𝜎𝑘(𝑠) but 𝜎𝑚+1

𝑘 (𝑝) - 𝑠.
Since 𝑠 and 𝑡 are coprime, so are 𝜎𝑘(𝑠) and 𝜎𝑘(𝑡). Note that

𝑓 = 𝜎𝑘(𝑟)
𝑟

= 𝜎𝑘(𝑠)𝑡
𝑠𝜎𝑘(𝑡) .

Hence 𝜎𝑚+1
𝑘 (𝑝) is a nontrivial factor of the numerator of 𝑓 and 𝜎−ℓ

𝑘 (𝑝) is
a nontrivial factor of the denominator of 𝑓 , a contradiction as 𝑓 is shift-
reduced.
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(ii) Suppose that 𝑟 ̸= 0. Then

𝑓 = 𝑟

𝜎𝑘(𝑟) = 𝜎𝑘(1/𝑟)
1/𝑟 .

Since 𝑓 is unequal to one, 1/𝑟 does not belong to F. It follows from (𝑖)
that 𝑓 is not shift-reduced, a contradiction.

According to [7, 10], every hypergeometric term 𝑇 admits a multiplicative
decomposition 𝑆𝐻, where 𝑆 is in F(𝑘) and 𝐻 is another hypergeometric term
whose shift-quotient is shift-reduced. We call the shift-quotient 𝐾 := 𝜎𝑘(𝐻)/𝐻
a kernel of 𝑇 w.r.t. 𝑘 and 𝑆 a corresponding shell. By Lemma 2.8 (𝑖), we know
that 𝐾 = 1 if and only if 𝑇 is a rational function, which is then equal to 𝑐𝑆 for
some constant 𝑐 ∈ 𝐶𝜎𝑘,D. Here D is a difference ring extension of F(𝑘).

Let 𝑇 = 𝑆𝐻 be a multiplicative decomposition, where 𝑆 is a rational function
and 𝐻 a hypergeometric term with a kernel 𝐾. Assume that 𝑇 = Δ𝑘(𝐺) for some
hypergeometric term 𝐺. A straightforward calculation shows that 𝐺 is similar
to 𝑇 . So there exists 𝑟 ∈ F(𝑘) such that 𝐺 = 𝑟𝐻. One can easily verify that

𝑆𝐻 = Δ𝑘(𝑟𝐻) ⇐⇒ 𝑆 = 𝐾𝜎𝑘(𝑟) − 𝑟. (2.1)



Chapter 3

Additive Decomposition for
Hypergeometric Terms 1

Computing an indefinite summation of a given hypergeometric term is one of
the basic problems in the theory of difference equations. In terms of algorithms,
Gosper’s algorithm [36] is the first complete algorithm for solving this problem.
However, when there exist no indefinite summations, Gosper’s algorithm is not
applicable any more, but we still desire more information so as to handle definite
summations. As far as we know, the first description of the non-summable case
was given by Abramov. In 1975, Abramov [2] developed a reduction algorithm to
compute an additive decomposition of a given rational function, which was im-
proved later by Pirastu and Strehl [55], Paule [51], and by Abramov himself [3],
etc. These algorithms decompose a rational function into a summable part and
a proper fractional part whose denominator is shift-free and of minimal degree.
We refer to it as a minimal additive decomposition of the given rational function.
According to Lemma 2.6, the fractional part is in fact non-summable. Hence a
rational function is summable if and only if the fractional part of a minimal de-
composition is zero. In 2001, Abramov and Petkovšek [7, 10] generalized these
ideas to the hypergeometric case. We call it the Abramov-Petkovšek reduction.
It preserves the minimality of additive decompositions. It loses, however, the
separation of summable and non-summable parts. More precisely, given a hyper-
geometric term 𝑇 , Abramov-Petkovšek reduction computes two hypergeometric
terms 𝑇1, 𝑇2 such that

𝑇 = Δ𝑘(𝑇1)⏟  ⏞  
summable

+ 𝑇2⏟ ⏞ 
possibly summable

,

where 𝑇2 is minimal in some sense. To determine the summability of 𝑇 , one needs
to further solve an auxiliary difference equation [10, §4]. The discrepancy in the
reductions for the rational case and the hypergeometric case is unpleasant.

1The main results in this chapter are joint work with S. Chen, M. Kauers, Z. Li, published
in [19].

13
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In this chapter, in order to obtain the consistency, we modify the Abramov-
Petkovšek reduction by a shift variant of the method developed by Bostan et
al. [15]. The modified Abramov-Petkovšek reduction not only preserves the min-
imality of the output additive decomposition, but also decomposes a hypergeo-
metric term as a sum of a summable part and a non-summable part. It laid a
solid foundation for the new reduction-based creative telescoping algorithm in
Chapter 5. Moreover, we implement the modified reduction in Maple 18 and
compare it with the built-in Maple procedure SumDecomposition, which is based
on the Abramov-Petkovšek reduction. The experimental results illustrate that the
modified Abramov-Petkovšek reduction is more efficient than the original one.

3.1 Abramov-Petkovšek reduction

In the shift case, reduction algorithms for computing minimal additive decompo-
sitions of rational functions have been well-developed. More details can be found
in [1, 2, 3, 51, 55]. For this reason, we will mainly focus on irrational hypergeo-
metric terms.

The Abramov-Petkovšek reduction [7, 10] is fundamental for the first part of
this thesis, which computes a minimal additive decomposition of a given hyperge-
ometric term. It can not only be used to determine hypergeometric summability,
but also provide some description of the non-summable part when the given
hypergeometric term is not summable. In this sense, the Abramov-Petkovšek re-
duction is more useful than Gosper’s algorithm in some cases, as illustrated by
the following example.

Example 3.1. 2 Consider a definite sum
∞∑︁

𝑘=0
𝑇 (𝑘), where 𝑇 (𝑘) = 1

(𝑘4 + 𝑘2 + 1)𝑘!
.

Applying Gosper’s algorithm shows that 𝑇 is not summable, and thus we cannot
evaluate the sum in terms of indefinite summations. Applying the Abramov-
Petkovšek reduction to 𝑇 , however, yields

𝑇 (𝑘) = Δ𝑘

(︃
𝑘2

2(𝑘2 − 𝑘 + 1)𝑘!

)︃
+ 1

2𝑘! .

Summing over 𝑘 from zero to infinity and using the telescoping sum technique
leads to a “closed form” of the summation,

∞∑︁
𝑘=0

𝑇 (𝑘) = lim
𝑘→∞

(︃
𝑘2

2(𝑘2 − 𝑘 + 1)𝑘!

)︃
− 0 +

∞∑︁
𝑘=0

1
2𝑘! = 1

2𝑒.

Thus the given sum in fact admits a simple form.
2We thank Yijun Chen for providing this example.
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To describe the Abramov-Petkovšek reduction concisely, we need a notational
convention and a technical definition.

Convention 3.2. Let 𝑇 be a hypergeometric term over F(𝑘) with a kernel 𝐾 and
a corresponding shell 𝑆. Then 𝑇 = 𝑆𝐻, where 𝐻 is a hypergeometric term whose
shift-quotient is 𝐾. Further write 𝐾 = 𝑢/𝑣, where 𝑢, 𝑣 are nonzero polynomials
in F[𝑘] with gcd(𝑢, 𝑣) = 1.

Moreover, we let U𝑇 be the union of {0} and the set of summable hypergeo-
metric terms that are similar to 𝑇 , and V𝐾 = {𝐾𝜎𝑘(𝑟) − 𝑟 | 𝑟 ∈ F(𝑘)}.

With the above convention, it is clear that U𝑇 and V𝐾 are both F-linear
vector spaces and U𝑇 = U𝐻 since 𝐻 is similar to 𝑇 . Then (2.1) translates into

𝑆𝐻 ≡𝑘 0 mod U𝐻 ⇐⇒ 𝑆 ≡𝑘 0 mod V𝐾 . (3.1)

These congruences enable us to shorten expressions.

Definition 3.3. With Convention 3.2, a nonzero polynomial 𝑝 in F[𝑘] is said to
be strongly coprime with 𝐾 if gcd(𝑝, 𝜎−𝑖

𝑘 (𝑢)) = gcd(𝑝, 𝜎𝑖
𝑘(𝑣)) = 1 for all 𝑖 ≥ 0.

The proof of Lemma 3 in [7] contains a reduction algorithm whose inputs and
outputs are given below.

Algorithm 3.4 (Abramov-Petkovšek Reduction).
Input: Two rational functions 𝐾,𝑆 ∈ F(𝑘) as defined in Convention 3.2.
Output: A rational function 𝑆1 ∈ F(𝑘) and two polynomials 𝑏, 𝑤 ∈ F[𝑘] such that
𝑏 is shift-free and strongly coprime with 𝐾, and the following equation holds:

𝑆 = 𝐾𝜎𝑘(𝑆1) − 𝑆1 + 𝑤

𝑏 · 𝜎−1
𝑘 (𝑢) · 𝑣

. (3.2)

The algorithm contained in the proof of Lemma 3 in [7] is described as pseudo
code on page 4 of the same paper, in which the last ten lines make the denominator
of the rational function 𝑉 in its output minimal in some technical sense. We shall
not execute these lines. Then the algorithm will compute two rational functions
𝑈1 and 𝑈2. They correspond to 𝑆1 and 𝑤/(𝑏 𝜎−1

𝑘 (𝑢) 𝑣) in (3.2), respectively.
We slightly modify the output of the Abramov-Petkovšek reduction so that

we can analyze it more easily in the next section. Note that 𝐾 is shift-reduced
and 𝑏 is strongly coprime with 𝐾. Thus, 𝑏, 𝜎−1

𝑘 (𝑢) and 𝑣 are pairwise coprime.
By partial fraction decomposition, (3.2) can be rewritten as

𝑆 = 𝐾𝜎𝑘(𝑆1) − 𝑆1 +
(︃
𝑎

𝑏
+ 𝑝1

𝜎−1
𝑘 (𝑢)

+ 𝑝2
𝑣

)︃
,

where 𝑎, 𝑝1, 𝑝2 ∈ F[𝑘]. Furthermore, set 𝑟 = 𝑝1/𝜎
−1
𝑘 (𝑢) and a direct calculation

yields
𝑟 = 𝐾𝜎𝑘(−𝑟) − (−𝑟) + 𝜎𝑘(𝑝1)

𝑣
.
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Update 𝑆1 to be 𝑆1 − 𝑟 and set 𝑝 to be 𝜎𝑘(𝑝1) + 𝑝2. Then

𝑆 = 𝐾𝜎𝑘(𝑆1) − 𝑆1 +
(︁𝑎
𝑏

+ 𝑝

𝑣

)︁
. (3.3)

This modification leads to shell reduction specified below.

Algorithm 3.5 (Shell Reduction).
Input: Two rational functions 𝐾,𝑆 ∈ F(𝑘) as defined in Convention 3.2.
Output: A rational function 𝑆1 ∈ F(𝑘) and three polynomials 𝑎, 𝑏, 𝑝 ∈ F[𝑘] such
that 𝑏 is shift-free and strongly coprime with 𝐾, and that (3.3) holds.

Shell reduction provides us with a necessary condition on summability.

Proposition 3.6. With Convention 3.2, let 𝑎, 𝑏, 𝑝 be polynomials in F[𝑘] where 𝑏
is shift-free and strongly coprime with 𝐾. Assume further that (3.3) holds. If 𝑇
is summable, then 𝑎/𝑏 belongs to F[𝑘].

Proof. Recall that 𝑇 = 𝑆𝐻 by Convention 3.2 and it has a kernel 𝐾 and a
corresponding shell 𝑆. It follows from (3.1) and (3.3) that

𝑇 ≡𝑘

(︁𝑎
𝑏

+ 𝑝

𝑣

)︁
𝐻 mod U𝐻 .

Thus, 𝑇 is summable if and only if (𝑎/𝑏+ 𝑝/𝑣)𝐻 is summable.
Set 𝐻 ′ = (1/𝑣)𝐻, which has a kernel 𝐾 ′ = 𝑢/𝜎𝑘(𝑣). Note that since 𝑏 is

strongly coprime with 𝐾, so is 𝐾 ′. Applying [10, Theorem 11] to (𝑎𝑣/𝑏+ 𝑝)𝐻 ′,
which is equal to (𝑎/𝑏+ 𝑝/𝑣)𝐻, yields that (𝑎𝑣/𝑏+𝑝) is a polynomial. Thus, 𝑎/𝑏
is a polynomial because 𝑏 is coprime with 𝑣.

The above proposition enables us to determine hypergeometric summability
directly in some instances.

Example 3.7. Let 𝑇 = 𝑘2𝑘!/(𝑘 + 1). Then it has a kernel 𝐾 = 𝑘 + 1 and the
shell 𝑆 = 𝑘2/(𝑘 + 1). Shell reduction yields

𝑆 ≡𝑘 − 1
𝑘 + 2 + 𝑘

𝑣
mod V𝐾 ,

where 𝑣 = 1. By Proposition 3.6, 𝑇 is not summable. By a similar argument as
before, one sees that 𝑘! is indeed not summable as mentioned in Example 2.4.

Note that 𝑎/𝑏+ 𝑝/𝑣 in (3.3) can be nonzero for a summable 𝑇 .

Example 3.8. Let 𝑇 = 𝑘 · 𝑘! whose kernel is 𝐾 = 𝑘+ 1 and shell is 𝑆 = 𝑘. Then

𝑆 ≡𝑘
𝑘

𝑣
mod V𝐾 ,

where 𝑣 = 1. But 𝑇 is summable as it is equal to Δ𝑘 (𝑘!).



3.2. Modified Abramov-Petkovšek reduction 17

The above example illustrates that neither shell reduction nor the Abramov-
Petkovšek reduction can decide summability directly when 𝑎/𝑏 ∈ F[𝑘] in (3.3).
One way to proceed is, according to [10], to find a polynomial solution of the
auxiliary first-order linear difference equation 𝑢𝜎𝑘(𝑧) − 𝑣𝑧 = 𝑎𝑣/𝑏 + 𝑝, under
the hypotheses of Algorithm 3.5. If there is a polynomial solution, say 𝑓 ∈ F[𝑘],
then 𝑇 = Δ𝑘((𝑆1 + 𝑓)𝐻); otherwise 𝑇 is not summable. This method reduces
the summability problem to solving a linear system over F. We show in the next
section how this can be avoided so as to read out summability directly from a
minimal decomposition.

3.2 Modified Abramov-Petkovšek reduction

After the shell reduction described in (3.3), it remains to check the summability
of the hypergeometric term (𝑎/𝑏+ 𝑝/𝑣)𝐻. In the rational case, i.e., when the ker-
nel 𝐾 is one, the rational function 𝑎/𝑏+𝑝/𝑣 in (3.3) can be further reduced to 𝑎/𝑏
with deg𝑘(𝑎) < deg𝑘(𝑏), because all polynomials are rational summable. However,
a hypergeometric term with a polynomial shell is not necessarily summable, for
example, 𝑘! has a polynomial shell but it is not summable.

In this section, we define the notion of discrete residual forms for rational
functions, and present a discrete variant of the polynomial reduction for hyper-
exponential functions given in [15]. This variant not only leads to a direct way to
decide summability, but also reduces the number of terms of 𝑝 in (3.3).

3.2.1 Discrete residual forms

With Convention 3.2, we define an F-linear map

𝜑𝐾 : F[𝑘] → F[𝑘]
𝑝 ↦→ 𝑢𝜎𝑘(𝑝) − 𝑣𝑝,

for all 𝑝 ∈ F[𝑘]. We call 𝜑𝐾 the map for polynomial reduction w.r.t. 𝐾.

Lemma 3.9. Let

W𝐾 = spanF

{︁
𝑘ℓ | ℓ ∈ N, ℓ ̸= deg𝑘(𝑝) for all nonzero 𝑝 ∈ im (𝜑𝐾)

}︁
.

Then F[𝑘] = im (𝜑𝐾) ⊕ W𝐾 .

Proof. By the definition of W𝐾 , im (𝜑𝐾) ∩ W𝐾 = {0}. The same definition
also implies that, for every nonnegative integer 𝑚, there exists a polynomial 𝑓𝑚

in im (𝜑𝐾)∪W𝐾 such that the degree of 𝑓𝑚 is equal to 𝑚. The set {𝑓0, 𝑓1, 𝑓2, . . .}
forms an F-basis of F[𝑘]. Thus F[𝑘] = im (𝜑𝐾) ⊕ W𝐾 .
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In view of the above lemma, we call W𝐾 the standard complement of im(𝜑𝐾).
Note that if 𝐾 = 1, then 𝜑𝐾 = Δ𝑘 and W𝐾 = {0} since all polynomials are
rational summable. According to Lemma 3.9, every polynomial 𝑝 ∈ F can be
uniquely decomposed as 𝑝 = 𝑝1 + 𝑝2 where 𝑝1 ∈ im (𝜑𝐾) and 𝑝2 ∈ W𝐾 .

Lemma 3.10. With Convention 3.2, let 𝑝 be a polynomial in F[𝑘]. Then there
exists a polynomial 𝑞 ∈ W𝐾 such that 𝑝/𝑣 ≡𝑘 𝑞/𝑣 mod V𝐾 .

Proof. Let 𝑞 ∈ F[𝑘] be the projection of 𝑝 on W𝐾 . Then there exists 𝑓 in F[𝑘]
such that 𝑝 = 𝜑𝐾(𝑓)+𝑞, that is, 𝑝 = 𝑢𝜎𝑘(𝑓)−𝑣𝑓+𝑞. So 𝑝/𝑣 = 𝐾𝜎𝑘(𝑓)−𝑓+𝑞/𝑣,
which is equivalent to 𝑝/𝑣 ≡𝑘 𝑞/𝑣 mod V𝐾 .

Remark 3.11. Replacing the polynomial 𝑝 in the above lemma by 𝑣𝑝, we see
that, for every polynomial 𝑝 ∈ F[𝑘], there exists 𝑞 ∈ W𝐾 such that 𝑝 ≡𝑘 𝑞/𝑣
mod V𝐾 .

By Lemma 3.10 and Remark 3.11, (3.3) implies that

𝑆 ≡𝑘
𝑎

𝑏
+ 𝑞

𝑣
mod V𝐾 , (3.4)

where 𝑎, 𝑏, 𝑞 are polynomials in F[𝑘], deg𝑘(𝑎) < deg𝑘(𝑏), 𝑏 is shift-free and strongly
coprime with 𝐾, and 𝑞 ∈ W𝐾 . The congruence (3.4) motivates us to translate
the notion of (continuous) residual forms [15] into the discrete setting.

Definition 3.12. With Convention 3.2, we further let 𝑓 be a rational function
in F(𝑘). Another rational function 𝑟 in F(𝑘) is called a (discrete) residual form
of 𝑓 w.r.t. 𝐾 if there exist 𝑎, 𝑏, 𝑞 in F[𝑘] such that

𝑓 ≡𝑘 𝑟 mod V𝐾 and 𝑟 = 𝑎

𝑏
+ 𝑞

𝑣
,

where deg𝑘(𝑎) < deg𝑘(𝑏), 𝑏 is shift-free and strongly coprime with 𝐾, and 𝑞
belongs to W𝐾 . For brevity, we just say that 𝑟 is a residual form w.r.t. 𝐾 if 𝑓
is clear from the context. Moreover, we call 𝑏 the significant denominator of 𝑟
if gcd(𝑎, 𝑏) = 1 and 𝑏 is monic, i.e., lc𝑘(𝑏) = 1.

Residual forms help us to decide summability, as shown below.

Proposition 3.13. With Convention 3.2, we further assume that 𝑟 is a nonzero
residual form w.r.t. 𝐾. Then the hypergeometric term 𝑟𝐻 is not summable.

Proof. Suppose that 𝑟𝐻 is summable. Let 𝑟 = 𝑎/𝑏 + 𝑞/𝑣, where 𝑎, 𝑏, 𝑞 ∈ F[𝑘],
deg𝑘(𝑎) < deg𝑘(𝑏), 𝑏 is shift-free and strongly coprime with 𝐾, and 𝑞 ∈ W𝐾 . By
Proposition 3.6, 𝑎/𝑏 is a polynomial. Since deg𝑘(𝑎) < deg𝑘(𝑏), we have 𝑎 = 0
and thus the term (𝑞/𝑣)𝐻 is summable. It follows from (2.1) that there exists
a rational function 𝑤 ∈ F(𝑘) such that 𝑢𝜎𝑘(𝑤) − 𝑣𝑤 = 𝑞. Thus, 𝑤 ∈ F[𝑘] by
Theorem 5.2.1 in [54, page 76], which implies that 𝑞 belongs to im (𝜑𝐾). But 𝑞
also belongs to W𝐾 . By Lemma 3.9, 𝑞 = 0 and then 𝑟 = 0, a contradiction.
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With Convention 3.2, let 𝑟 be a residual form of the shell 𝑆 w.r.t. 𝐾. Then

𝑆𝐻 ≡𝑘 𝑟𝐻 mod U𝐻

according to (3.1) and (3.4). By Proposition 3.13, 𝑆𝐻 is summable if and only if
𝑟 = 0. Thus, determining the summability of a hypergeometric term 𝑇 amounts
to computing a residual form of a corresponding shell with respect to a kernel
of 𝑇 , which is studied below.

3.2.2 Polynomial reduction

With Convention 3.2, to compute a residual form of a rational function, we project
a polynomial on im(𝜑𝐾) and also its standard complement W𝐾 , both defined in
the previous subsection. If the given term 𝑇 is a rational function, i.e., 𝐾 = 1,
then this projection is trivial because im(𝜑) = im(Δ𝑘) = F[𝑘] and W𝐾 = {0}.

Now we assume 𝐾 ̸= 1 and let B𝐾 = {𝜑𝐾(𝑘𝑖) | 𝑖 ∈ N}. Since 𝐾 ̸= 1, the
F-linear map 𝜑𝐾 is injective by Lemma 2.8 (𝑖𝑖). So B𝐾 is an F-basis of im (𝜑𝐾),
which allows us to construct an echelon basis of im(𝜑𝐾). By an echelon basis, we
mean an F-basis in which distinct elements have distinct degrees. We can easily
project a polynomial using an echelon basis and linear elimination.

To construct an echelon basis, we rewrite im(𝜑𝐾) as

im(𝜑𝐾) = {𝑢Δ𝑘(𝑝) − (𝑣 − 𝑢)𝑝 | 𝑝 ∈ F[𝑘]} .

Set 𝛼1 = deg𝑘(𝑢), 𝛼2 = deg𝑘(𝑣), and 𝛽 = deg𝑘(𝑣 − 𝑢). Moreover, set

𝜏𝐾 = lc𝑘(𝑣 − 𝑢)
lc𝑘(𝑢) ,

which is nonzero since 𝐾 ̸= 1 and let 𝑝 be a nonzero polynomial in F[𝑘].
We make the following case distinction.

Case 1. 𝛽 > 𝛼1. Then 𝛽 = 𝛼2, and

𝜑𝐾(𝑝) = − lc𝑘(𝑣 − 𝑢) lc𝑘(𝑝)𝑘𝛼2+deg𝑘(𝑝) + lower terms.

So B𝐾 is an echelon basis of im(𝜑𝐾), in which deg𝑘(𝜑𝐾(𝑘𝑖)) is equal to 𝛼2 + 𝑖
for all 𝑖 ∈ N. Accordingly, W𝐾 has an echelon basis {1, 𝑘, . . . , 𝑘𝛼2−1} and has
dimension 𝛼2.
Case 2. 𝛽 = 𝛼1. Then

𝜑𝐾(𝑝) = − lc𝑘(𝑣 − 𝑢) lc𝑘(𝑝)𝑘𝛼1+deg𝑘(𝑝) + lower terms.

So B𝐾 is an echelon basis of im(𝜑𝐾), in which deg𝑘(𝜑𝐾(𝑘𝑖)) is equal to 𝛼1 + 𝑖
for all 𝑖 ∈ N. Accordingly, W𝐾 has an echelon basis {1, 𝑘, . . . , 𝑘𝛼1−1} and has
dimension 𝛼1.
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Case 3. 𝛽 < 𝛼1 − 1. If deg𝑘(𝑝) = 0, then 𝜑𝐾(𝑝) = (𝑢− 𝑣)𝑝. Otherwise, we have

𝜑𝐾(𝑝) = deg𝑘(𝑝) lc𝑘(𝑢) lc𝑘(𝑝)𝑘𝛼1+deg𝑘(𝑝)−1 + lower terms.

It follows that B𝐾 is an echelon basis of im(𝜑𝐾), in which deg𝑘(𝜑𝐾(1)) = 𝛽 and

deg𝑘(𝜑𝐾(𝑘𝑖)) = 𝛼1 + 𝑖− 1 for all 𝑖 ≥ 1.

Accordingly, W𝐾 has an echelon basis {1, . . . , 𝑘𝛽−1, 𝑘𝛽+1, . . . , 𝑘𝛼1−1} and has di-
mension 𝛼1 − 1.
Case 4. 𝛽 = 𝛼1 − 1 and 𝜏𝐾 is not a positive integer. Then

𝜑𝐾(𝑝) = (deg𝑘(𝑝) lc𝑘(𝑢) − lc𝑘(𝑣 − 𝑢)) lc𝑘(𝑝)𝑘𝛼1+deg𝑘(𝑝)−1 + lower terms. (3.5)

Accordingly, B𝐾 is an echelon basis of im(𝜑𝐾), in which deg𝑘(𝜑𝐾(𝑘𝑖)) = 𝛼1 +𝑖−1
for all 𝑖 ∈ N. Accordingly, W𝐾 has an echelon basis {1, 𝑘, . . . , 𝑘𝛼1−2} and has
dimension 𝛼1 − 1.
Case 5. 𝛽 = 𝛼1 − 1 and 𝜏𝐾 is a positive integer. It follows from (3.5) that
for 𝑖 ̸= 𝜏𝐾 , we have deg𝑘(𝜑𝐾(𝑘𝑖)) = 𝛼1 + 𝑖− 1. Moreover, for every polynomial 𝑝
of degree 𝜏𝐾 , 𝜑𝐾(𝑝) is of degree less than 𝛼1 + 𝜏𝐾 − 1. So any echelon basis
of im(𝜑𝐾) does not contain a polynomial of degree 𝛼1 + 𝜏𝐾 − 1. Set

B′
𝐾 =

{︁
𝜑𝐾(𝑘𝑖) | 𝑖 ∈ N, 𝑖 ̸= 𝜏𝐾

}︁
.

Reducing 𝜑𝐾(𝑘𝜏𝐾 ) by the polynomials in B′
𝐾 , we obtain a polynomial 𝑝′ with

degree less than 𝛼1 − 1. Since B𝐾 is an F-basis and B′
𝐾 ⊂ B𝐾 , 𝑝′ ̸= 0. Hence

B′
𝐾 ∪ {𝑝′} is an echelon basis of im(𝜑𝐾). Consequently, W𝐾 has an echelon basis

{1, 𝑘, . . . , 𝑘deg𝑘(𝑝′)−1, 𝑘deg𝑘(𝑝′)+1, . . . , 𝑘𝛼1−2, 𝑘𝛼1+𝜏𝐾−1}. The dimension of W𝐾 is
equal to 𝛼1 − 1.

Example 3.14. Let 𝐾 = (𝑘4 +1)/(𝑘+1)4, which is shift-reduced. Then 𝜏𝐾 = 4.
According to Case 5, im(𝜑𝐾) has an echelon basis

{𝜑𝐾 (𝑝)} ∪ {𝜑𝐾 (𝑘𝑚) | 𝑚 ∈ N,𝑚 ̸= 4} ,

where 𝑝 = 𝑘4 + 𝑘/3 + 1/2, 𝜑𝐾(𝑝) = (5/3)𝑘2 + 2𝑘 + 4/3, and

𝜑𝐾 (𝑘𝑚) = (𝑚− 4)𝑘𝑚+3 + lower terms.

Therefore, W𝐾 has a basis {1, 𝑘, 𝑘7}.

From the above case distinction and example one observes that, although the
degree of a polynomial in the standard complement depends on 𝜏𝐾 , which may
be arbitrarily high, the number of its terms depends merely on the degrees of 𝑢
and 𝑣. We record this observation in the next proposition.



3.2. Modified Abramov-Petkovšek reduction 21

Proposition 3.15. With Convention 3.2, further let 𝛼1 = deg𝑘(𝑢), 𝛼2 = deg𝑘(𝑣)
and 𝛽 = max{0,deg𝑘(𝑣 − 𝑢)}. Then there exists a set 𝒫 ⊂ {𝑘𝑖 | 𝑖 ∈ N} with

|𝒫| ≤ max{𝛼1, 𝛼2} − J𝛽 ≤ 𝛼1 − 1K

such that every polynomial in F[𝑘] can be reduced modulo im(𝜑𝐾) to an F-linear
combination of the elements in 𝒫. Note that here the expression J𝛽 ≤ 𝛼1 − 1K
equals 1 if 𝛽 ≤ 𝛼1 − 1, otherwise it is 0.

Proof. If 𝐾 = 1, then im(𝜑𝐾) = im(Δ𝑘) = F[𝑘] and 𝛼1 = 𝛼2 = 𝛽 = 0. Taking
𝒫 = ∅ completes the proof. Otherwise 𝐾 ̸= 1. By the above case distinction, the
dimension of W𝐾 over F is no more than max{𝛼1, 𝛼2}−J𝛽 ≤ 𝛼1 −1K. The lemma
follows.

When 𝐾 ̸= 1, the above case distinction enables one to find an infinite se-
quence 𝑝0, 𝑝1, . . . in F[𝑘] such that

E𝐾 = {𝜑𝐾(𝑝𝑖)|𝑖 ∈ N} with deg𝑘 𝜑𝐾(𝑝𝑖) < deg𝑘 𝜑𝐾(𝑝𝑖+1),

is an echelon basis of im (𝜑𝐾). This basis allows one to project a polynomial
on im (𝜑𝐾) and W𝐾 , respectively. In the first four cases, the 𝑝𝑖’s can be chosen
as powers of 𝑘. But in the last case, one of the 𝑝𝑖’s is not necessarily a monomial
as shown in Example 3.14.

Based on the above discussion, we have the following algorithm.

Algorithm 3.16 (Polynomial Reduction).
Input: A polynomial 𝑝 ∈ F[𝑘] and a shift-reduced rational function 𝐾 ∈ F(𝑘).
Output: Two polynomials 𝑓, 𝑞 ∈ F[𝑘] such that 𝑞 ∈ W𝐾 and 𝑝 = 𝜑𝐾(𝑓) + 𝑞.

1 If 𝑝 = 0, then set 𝑓 = 0 and 𝑞 = 0; and return.

2 If 𝐾 = 1, then set 𝑓 = Δ−1
𝑘 (𝑝) and 𝑞 = 0; and return.

2 Set 𝑑 = deg𝑘(𝑝).
Find the subset P =

{︀
𝑝𝑖1
, . . . , 𝑝𝑖𝑠

}︀
consisting of the preimages of all

polynomials in the echelon basis E𝐾 whose degrees are at most 𝑑.

3 For 𝑗 = 𝑠, 𝑠− 1, . . . , 1, perform linear elimination to
find 𝑐𝑠, 𝑐𝑠−1, . . . , 𝑐1 ∈ F such that 𝑝−

∑︀𝑠
𝑗=1 𝑐𝑗𝜑𝐾(𝑝𝑖𝑗

) ∈ W𝐾 .

4 Set 𝑓 =
∑︀𝑠

𝑗=1 𝑐𝑗𝑝𝑖𝑗
and 𝑞 = 𝑝− 𝜑𝐾(𝑓); and return.

Together with Algorithms 3.5 and 3.16, we are ready to present a modi-
fied version of the Abramov-Petkovšek reduction, which is summarized as Algo-
rithm 3.17. This modified reduction determines summability without solving any
auxiliary difference equations explicitly.
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Algorithm 3.17 (Modified Abramov-Petkovšek Reduction).
Input: A hypergeometric term 𝑇 over F(𝑘).
Output: A hypergeometric term 𝐻 with a kernel 𝐾 and two rational functions
𝑓, 𝑟 ∈ F(𝑘) such that 𝑟 is a residual form w.r.t. 𝐾 and

𝑇 = Δ𝑘(𝑓𝐻) + 𝑟𝐻. (3.6)

1 Find a kernel 𝐾 and a corresponding shell 𝑆 of 𝑇 .

2 Apply Algorithm 3.5, namely the shell reduction, to 𝑆 w.r.t. 𝐾 to
find three polynomials 𝑏, 𝑠, 𝑡 ∈ F[𝑘] and a rational function 𝑔 ∈ F(𝑘)
such that 𝑏 is shift-free and strongly coprime with 𝐾, and

𝑇 = Δ𝑘 (𝑔𝐻) +
(︂
𝑠

𝑏
+ 𝑡

𝑣

)︂
𝐻, (3.7)

where 𝜎𝑘(𝐻)/𝐻 = 𝐾 and 𝑣 is the denominator of 𝐾.

3 Set 𝑝 and 𝑎 to be the quotient and remainder of 𝑠 and 𝑏, respectively.

4 Apply Algorithm 3.16, namely the polynomial reduction, to 𝑣𝑝+ 𝑡 to
find ℎ ∈ F[𝑘] and 𝑞 ∈ W𝐾 such that 𝑣𝑝+ 𝑡 = 𝜑𝐾(ℎ) + 𝑞.

5 Set 𝑓 = 𝑔 + ℎ and 𝑟 = 𝑎/𝑏+ 𝑞/𝑣; and return 𝐻, 𝑓 and 𝑟.

Theorem 3.18. With Convention 3.2, Algorithm 3.17 computes a rational func-
tion 𝑓 in F(𝑘) and a residual form 𝑟 w.r.t. 𝐾 such that (3.6) holds. Moreover, 𝑇
is summable if and only if 𝑟 = 0.

Proof. Recall that 𝑇 = 𝑆𝐻, where 𝐻 has a kernel 𝐾 and 𝑆 is a rational function.
Applying shell reduction to 𝑆 w.r.t. 𝐾 yields (3.7), which can be rewritten as

𝑇 = Δ𝑘 (𝑔𝐻) +
(︂
𝑎

𝑏
+ 𝑣𝑝+ 𝑡

𝑣

)︂
𝐻,

where 𝑎 and 𝑝 are given in step 3 of Algorithm 3.17. The polynomial reduction
in step 4 yields that 𝑣𝑝+ 𝑡 = 𝑢𝜎𝑘(ℎ) − 𝑣ℎ+ 𝑞. Substituting this into (3.7) gives

𝑇 = Δ𝑘(𝑔𝐻) + (𝐾𝜎𝑘(ℎ) − ℎ)𝐻 +
(︁𝑎
𝑏

+ 𝑞

𝑣

)︁
𝐻

= Δ𝑘((𝑔 + ℎ)𝐻) + 𝑟𝐻,

where 𝑟 = 𝑎/𝑏 + 𝑞/𝑣. Thus, (3.6) holds. By Proposition 3.13, 𝑇 is summable if
and only if 𝑟 is equal to zero.
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Example 3.19. Let 𝑇 be the same hypergeometric term as in Example 3.7. Then
we know 𝐾 = 𝑘 + 1 and 𝑆 = 𝑘2/(𝑘 + 1). Set 𝐻 = 𝑘!. By the shell reduction in
Example 3.7,

𝑇 = Δ𝑘

(︂
−1
𝑘 + 1𝐻

)︂
+
(︂

−1
𝑘 + 2 + 𝑘

𝑣

)︂
𝐻 with 𝑣 = 1.

Applying the polynomial reduction to (𝑘/𝑣)𝐻 yields (𝑘/𝑣)𝐻 = Δ𝑘(1 ·𝐻). Com-
bining the above steps, we decompose 𝑇 as

𝑇 = Δ𝑘

(︂
𝑘

𝑘 + 1𝐻
)︂

− 1
𝑘 + 2𝐻.

So the input term 𝑇 is not summable, which is consistent with Example 3.7.

Example 3.20. Let 𝑇 be the same hypergeometric term as in Example 3.8. Then
we know 𝐾 = 𝑘 + 1 and 𝑆 = 𝑘. Set 𝐻 = 𝑘!. The shell reduction in Example 3.8
gives

𝑇 = Δ𝑘(0) + 𝑘

𝑣
𝐻 with 𝑣 = 1.

By the polynomial reduction, (𝑘/𝑣)𝐻 = Δ𝑘 (1 ·𝐻) , and hence 𝑇 = Δ𝑘 (𝑘!),
implying that 𝑇 is summable.

Remark 3.21. With the notation given in step 5 of Algorithm 3.17, we can
rewrite 𝑟𝐻 as (𝑠1/𝑠2)𝐺, where 𝑠1 = 𝑎𝑣 + 𝑏𝑞, 𝑠2 = 𝑏, and 𝐺 = 𝐻/𝑣. It follows
from the case distinction in this subsection that the degree of 𝑠1 is bounded
by 𝜆 given in [7, Theorem 8]. The polynomial 𝑠2 is equal to 𝑏 in (3.2) whose
degree is minimal by [7, Theorem 3]. Moreover, 𝜎𝑘(𝐺)/𝐺 is shift-reduced because
𝜎𝑘(𝐻)/𝐻 is. These are exactly the same required properties of the output of the
Abramov-Petkovšek reduction [7]. In summary, the modified reduction preserves
all required conditions for the outputs of the original reduction, namely, it also
returns a minimal additive decomposition of a given hypergeometric term.

It is remarkable that the modified Abramov-Petkovšek reduction also applies
to Example 3.1. Moreover, compared to the original reduction, the modified re-
duction not only further decomposes a hypergeometric term into a summable part
and a non-summable part, but also provides a new method for proving identities
in several examples.

Example 3.22. Consider the following two famous combinatorial identities
∞∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
= 2𝑛 and

∞∑︁
𝑘=0

(︂
𝑛

𝑘

)︂2
=
(︂

2𝑛
𝑛

)︂
.

Many methods can be used to prove the above identities. In this example, we use
the modified Abramov-Petkovšek reduction.
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Referring to the first identity, we apply the modified reduction to the sum-
mand and get (︂

𝑛

𝑘

)︂
= Δ𝑘

(︂
−1

2

(︂
𝑛

𝑘

)︂)︂
+ 𝑛+ 1

2(𝑘 + 1)

(︂
𝑛

𝑘

)︂
.

Summing over 𝑘 from zero to infinity and using the telescoping sum technique
yields

∞∑︁
𝑘=0

(︂
𝑛

𝑘

)︂
= lim

𝑘→∞

(︂
−1

2

(︂
𝑛

𝑘

)︂)︂
−
(︂

−1
2

)︂
+

∞∑︁
𝑘=0

𝑛+ 1
2(𝑘 + 1)

(︂
𝑛

𝑘

)︂

= 1
2 + 1

2

∞∑︁
𝑘=0

(︂
𝑛+ 1
𝑘 + 1

)︂
= 1

2

∞∑︁
𝑘=0

(︂
𝑛+ 1
𝑘

)︂
.

Let 𝐹 (𝑛) =
∑︀∞

𝑘=0
(︀

𝑛
𝑘

)︀
. Then the above equation can be rewritten as a first-order

difference equation about 𝐹 (𝑛),

𝐹 (𝑛+ 1) − 2𝐹 (𝑛) = 0.

It is readily seen that 2𝑛 is a solution. Since 20 = 1 = 𝐹 (0), we have 𝐹 (𝑛) = 2𝑛,
which proves the first identity.

For the second identity, applying the modified reduction to the summand
yields (︂

𝑛

𝑘

)︂2
= Δ𝑘

(︃
−1

2
𝑛+ 2𝑘 + 1

2𝑛+ 1

(︂
𝑛

𝑘

)︂2
)︃

+ 1
2

(𝑛+ 1)3

(2𝑛+ 1)(𝑘 + 1)2

(︂
𝑛

𝑘

)︂2
.

Along entirely similar lines as the first identity, we get a first-order difference
equation

(𝑛+ 1)𝐹 (𝑛+ 1) − 2(2𝑛+ 1)𝐹 (𝑛) = 0,

where 𝐹 (𝑛) =
∑︀∞

𝑘=0
(︀

𝑛
𝑘

)︀2. The second identity follows since
(︀2𝑛

𝑛

)︀
satisfies the same

difference equation and has the same initial value at zero as 𝐹 (𝑛).
However, the Abramov-Petkovšek reduction applies to neither the first iden-

tity nor the second one.

3.3 Implementation and timings

We have implemented Algorithms 3.5 – 3.17 in Maple 18. The procedures are
included in our Maple package ShiftReductionCT. A detailed description of
this package is given in Appendix A.

In order to get an idea about the efficiency of our new procedures, we com-
pared their runtime and memory requirements to the performance of known al-
gorithms. Since the comparisons of runtime and memory requirements almost
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have the same indication, we only show that of runtime in this section. One can
refer to Appendix B for the memory requirements. All timings are measured in
seconds on a Linux computer with 388Gb RAM and twelve 2.80GHz Dual core
processors. The computations for this experiment did not use any parallelism.
For brevity, we denote

• G: the procedure Gosper in SumTools[Hypergeometric], which is based
on Gosper’s algorithm;

• AP: the procedure SumDecomposition in SumTools[Hypergeometric],
which is based on the Abramov-Petkovšek reduction;

• S: the procedure IsSummable in ShiftReductionCT, which determines
hypergeometric summability in a similar way as Gosper’s algorithm;

• MAP: the procedure ModifiedAbramovPetkovsekReduction in ShiftReduc-
tionCT, which is based on the modified reduction.

We make the following two comparisons. One is for random hypergeometric terms,
while the other is for summable hypergeometric terms.

Example 3.23 (Random hypergeometric terms). Consider hypergeometric terms
of the form

𝑇 (𝑘) = 𝑓(𝑘)
𝑔1(𝑘)𝑔2(𝑘)

𝑘∏︁
ℓ=𝑚0

𝑢(ℓ)
𝑣(ℓ) , (3.8)

where 𝑓 ∈ Z[𝑘] of degree 20, 𝑚0 ∈ F is fixed, 𝑢, 𝑣 are both the product of
two polynomials in Z[𝑘] of degree one, 𝑔𝑖 = 𝑝𝑖𝜎

𝜆
𝑘 (𝑝𝑖)𝜎𝜇

𝑘 (𝑝𝑖) with 𝑝𝑖 ∈ Z[𝑘] of
degree 10, 𝜆, 𝜇 ∈ N, and 𝛼, 𝛽 ∈ Z. For a selection of random terms of this
type for different choices of 𝜆 and 𝜇, Table 3.1 compares the timings of the four
procedures described above.

(𝜆, 𝜇) G AP S MAP
(0, 0) 0.09 0.16 0.12 0.12
(5, 5) 0.36 3.99 0.37 0.45

(10, 10) 0.66 13.70 0.65 0.86
(10, 20) 4.05 40.82 1.41 2.53
(10, 30) 12.13 294.52 2.22 6.26
(10, 40) 19.09 564.71 3.31 14.11
(10, 50) 34.89 865.01 4.76 26.02

Table 3.1: Timing comparison of Gosper’s algorithm, the Abramov-Petkovšek
reduction and the modified version for random hypergeometric terms (in seconds)

Example 3.24 (Summable hypergeometric terms). Consider the summable terms
𝜎𝑘(𝑇 )−𝑇 , where 𝑇 is of the form (3.8). Similarly, for the same choices of 𝜆 and 𝜇
as the previous example, Table 3.2 compares the timings of the four procedures.
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(𝜆, 𝜇) G AP S MAP
(0, 0) 1.13 2.34 1.27 1.26
(5, 5) 1.86 6.44 1.59 1.59

(10, 10) 2.22 13.78 1.63 1.63
(10, 20) 7.09 29.76 2.09 2.10
(10, 30) 19.61 57.63 2.34 2.33
(10, 40) 30.83 95.31 2.49 2.49
(10, 50) 64.69 168.72 2.69 2.69

Table 3.2: Timing comparison of Gosper’s algorithm, the Abramov-Petkovšek re-
duction and the modified version for summable hypergeometric terms (in seconds)

Notice that 𝜇 is the dispersion of 𝑔𝑖 and itself in (3.8) (see Definition 4.13).
From Table 3.1 and Table 3.2, we observe that for different procedures, the effect
of dispersion is quite different. Figure 3.1 describes the effect of dispersion on the
above four procedures in Example 3.23 and Example 3.24.
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Figure 3.1: Comparison of the effect of dispersion on Gosper’s algorithm, the
Abramov-Petkovšek reduction and the modified version for Examples 3.23 and 3.24



Chapter 4

Further Properties of
Residual Forms 1

In Chapter 3, we presented a modified version of the Abramov-Petkovšek reduc-
tion, which decomposes a univariate hypergeometric term into a summable part
and a non-summable part. Moreover, the non-summable part is described by a
residual form. In [15], the authors used the Hermite reduction for univariate hy-
perexponential functions to compute telescopers for bivariate hyperexponential
functions. It allows one to separate the computation of telescopers from that of
certificates. We try to translate their idea into the hypergeometric setting.

We call a bivariate nonzero term hypergeometric if its shift-quotients with
respect to the two variables are both rational functions. Given a hypergeometric
term 𝑇 (𝑛, 𝑘). Let 𝜎𝑛 and 𝜎𝑘 be the shift operators w.r.t. 𝑛 and 𝑘, respectively.
Applying the modified Abramov-Petkovšek reduction to 𝑇 as well as its shifts
𝜎𝑛(𝑇 ), . . . , 𝜎𝑖

𝑛(𝑇 ) w.r.t. 𝑘, where 𝑖 is a nonnegative integer, we obtain

𝜎𝑗
𝑛(𝑇 ) ≡𝑘 𝑟𝑗𝐻 mod U𝐾 for 𝑗 = 0, . . . , 𝑖,

where 𝐻 is another bivariate hypergeometric term whose shift-quotient 𝐾 w.r.t. 𝑘
is shift-reduced w.r.t. 𝑘, and 𝑟𝑗 is a residual form w.r.t. 𝐾. For univariate rational
functions 𝑐0(𝑛), 𝑐1(𝑛), . . . , 𝑐𝑖(𝑛), not all zero, we have

𝑖∑︁
𝑗=0

𝑐𝑗𝜎
𝑗
𝑛(𝑇 ) ≡𝑘

𝑖∑︁
𝑗=0

𝑐𝑗𝑟𝑗𝐻 mod U𝐾 .

It is readily seen that
∑︀𝑖

𝑗=0 𝑐𝑗𝜎
𝑗
𝑛 is a telescoper for 𝑇 w.r.t. 𝑘 if

∑︀𝑖
𝑗=0 𝑐𝑗𝑟𝑗 = 0.

Unfortunately, the converse is false. This is because
∑︀𝑖

𝑗=0 𝑐𝑗𝑟𝑗 is not necessarily
a residual form, although all the 𝑟𝑗 ’s are. Thus Theorem 3.18 is not applicable.

1The main results in this chapter are joint work with S. Chen, M. Kauers, Z. Li, published
in [19].

27
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This situation does not occur in the differential case [15]. To make Theorem 3.18
applicable, we need to find a way to make

∑︀𝑖
𝑗=1 𝑐𝑗𝑟𝑗 a residual form.

This chapter aims at connecting univariate hypergeometric terms with bivari-
ate ones for the next two chapters. In this chapter, we present further properties
of residual forms so as to estimate the order bounds of telescopers in Chapter 6.
To make the modified reduction applicable to compute telescopers for hypergeo-
metric terms in Chapter 5, we also show that the linear combination of residual
forms is well-behaved in terms of congruences.

4.1 Rational normal forms

In this section, we recall the notion of rational normal forms from [10] and review
the relation between distinct rational normal forms of a rational function.

Definition 4.1. Two polynomials 𝑝, 𝑞 ∈ F[𝑘] are called shift-equivalent w.r.t. 𝑘
if there exists an integer 𝑚 such that 𝑝 = 𝜎𝑚

𝑘 (𝑞). We denote it by 𝑝 ∼𝑘 𝑞.

It is readily seen that ∼𝑘 is an equivalence relation. We call a polynomial
in F[𝑘] monic if its leading coefficient w.r.t. 𝑘 is 1.

Definition 4.2. Let 𝑓 be a rational function in F(𝑘). A rational function pair
(𝐾,𝑆) with 𝐾,𝑆 ∈ F(𝑘) is called a rational normal form of 𝑓 if

𝑓 = 𝐾 · 𝜎𝑘(𝑆)
𝑆

and 𝐾 is shift-reduced.

By Theorem 1 in [10], every rational function has a rational normal form. It is
not hard to see that there is a one-to-one correspondence between multiplicative
decompositions for a given hypergeometric term and rational normal forms for
the corresponding shift-quotient. More precisely, for a hypergeometric term 𝑇
over F(𝑘), a rational function pair (𝐾,𝑆) is a rational normal form of 𝜎𝑘(𝑇 )/𝑇 if
and only if 𝐾 is a kernel of 𝑇 and 𝑆 a corresponding shell, if and only if 𝑇 has
a multiplicative decomposition 𝑇 = 𝑆𝐻 with 𝐻 a hypergeometric term whose
shift-quotient is 𝐾.

In fact, a rational function can have more than one rational normal form, as
illustrated by the following example.

Example 4.3 (Example 1 in [10]). Consider a rational function

𝑓 = 𝑘(𝑘 + 2)
(𝑘 − 1)(𝑘 + 1)2(𝑘 + 3)

.
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It can be verified that the following rational function pairs(︂
1

(𝑘 + 1)(𝑘 + 3) , (𝑘 − 1)(𝑘 + 1)
)︂
,

(︃
1

(𝑘 + 1)2 ,
𝑘 − 1
𝑘 + 2

)︃
,

(︂
1

(𝑘 − 1)(𝑘 − 3) ,
𝑘 + 1
𝑘

)︂
,

(︂
1

(𝑘 − 1)(𝑘 + 1) ,
1

𝑘(𝑘 + 2)

)︂
.

are all rational normal forms of 𝑓 .

The next theorem describes a relation between two distinct rational normal
forms of a rational function.

Theorem 4.4 (Theorem 2 in [10]). Assume that (𝐾,𝑆), (𝐾 ′, 𝑆′) ∈ F(𝑘)2 are
distinct rational normal forms of a rational function in F(𝑘). Write

𝐾 = 𝑐
𝑢

𝑣
and 𝐾 ′ = 𝑐′ 𝑢

′

𝑣′ ,

where 𝑐, 𝑐′ ∈ F, 𝑢, 𝑢′, 𝑣, 𝑣′ ∈ F[𝑘] are all monic, and gcd(𝑢, 𝑣) = gcd(𝑢′, 𝑣′) = 1.
Then

(𝑖) 𝑐 = 𝑐′;
(𝑖𝑖) deg𝑘(𝑢) = deg𝑘(𝑢′) and deg𝑘(𝑣) = deg𝑘(𝑣′);

(𝑖𝑖𝑖) there is a one-to-one correspondence 𝜑 between the multi-sets of nontrivial
monic irreducible factors of 𝑢 and 𝑢′ such that 𝑝 ∼𝑘 𝜑(𝑝) for any nontrivial
monic irreducible factor 𝑝 of 𝑢.

(𝑖𝑣) there is a one-to-one correspondence 𝜓 between the multi-sets of nontrivial
monic irreducible factors of 𝑣 and 𝑣′ such that 𝑝 ∼𝑘 𝜑(𝑝) for any nontrivial
monic irreducible factor 𝑝 of 𝑣.

4.2 Uniqueness and relatedness of residual forms

In this section, we will present two useful properties of residual forms, which
enables us to derive order bounds in Chapter 6. For the notion of residual forms,
one can refer to Definition 3.12.

Unlike the differential case, a rational function may have more than one resid-
ual form in the shift case. These residual forms, however, are related to each other
in some way. To describe it precisely, we introduce the notion of shift-relatedness.

Definition 4.5. Two shift-free polynomials 𝑝, 𝑞 ∈ F[𝑘] are called shift-related,
denoted by 𝑝 ≈𝑘 𝑞, if for any nontrivial monic irreducible factor 𝑓 of 𝑝, there
exists a unique monic irreducible factor 𝑔 of 𝑞 with the same multiplicity as 𝑓
in 𝑝 such that 𝑓 ∼𝑘 𝑔, and vice versa.
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It is readily seen that ≈𝑘 is an equivalence relation. The following theorem
describes the uniqueness of residual forms.

Theorem 4.6. Let 𝐾 ∈ F(𝑘) be a shift-reduced rational function. Assume that
𝑟1, 𝑟2 are both residual forms of a same rational function in F(𝑘) w.r.t. 𝐾. Then
the significant denominators of 𝑟1 and 𝑟2 are shift-related to each other.

Proof. Assume that 𝑟1, 𝑟2 are of the forms

𝑟1 = 𝑎1
𝑏1

+ 𝑞1
𝑣

and 𝑟2 = 𝑎2
𝑏2

+ 𝑞2
𝑣
,

where for 𝑖 = 1, 2, 𝑎𝑖, 𝑏𝑖 ∈ F[𝑘], deg𝑘(𝑎𝑖) < deg𝑘(𝑏𝑖), gcd(𝑎𝑖, 𝑏𝑖) = 1, 𝑏𝑖 is monic,
shift-free and strongly coprime with 𝐾, 𝑞𝑖 ∈ W𝐾 , and 𝑣 is the denominator
of 𝐾. Since 𝑟1, 𝑟2 are both residual forms of the same rational function, 𝑟1 ≡𝑘 𝑟2
mod V𝐾 , which is equivalent to

𝑎1
𝑏1

≡𝑘
𝑎2
𝑏2

+ 𝑞2 − 𝑞1
𝑣

mod V𝐾 .

By (2.1), there exists 𝑤 ∈ F(𝑘) so that

𝑎1𝑣

𝑏1
= 𝑢𝜎𝑘(𝑤) − 𝑣𝑤 + 𝑎2𝑣

𝑏2
+ (𝑞2 − 𝑞1). (4.1)

Let 𝑓 ∈ F[𝑘] be a nontrivial monic irreducible factor of 𝑏1 with multiplicity 𝛼 > 0.
If 𝑓𝛼 divides 𝑏2, then we are done. Otherwise, let den(𝑤) be the denominator
of 𝑤. Since 𝑏1 is strongly coprime with 𝐾, we have gcd(𝑓𝛼, 𝑣) = 1. By (4.1)
and partial fraction decomposition, 𝑓𝛼 either divides den(𝑤) or 𝜎𝑘(den(𝑤)). If
𝑓𝛼 divides den(𝑤), let

𝑚 = max{𝑘 ∈ Z | 𝜎𝑘
𝑘(𝑓)𝛼 divides den(𝑤)},

and then 𝑚 ≥ 0. Since 𝑏1 is strongly coprime with 𝐾, gcd(𝜎𝑚+1
𝑘 (𝑓)𝛼, 𝑢) = 1.

Apparently, 𝜎𝑚+1
𝑘 (𝑓)𝛼 divides 𝜎𝑘(den(𝑤)) but doesn’t divide den(𝑤) as 𝑚 is

maximal. Note that 𝑏1 is shift-free and 𝑓 | 𝑏1, thus 𝑏1 is not divisible by 𝜎𝑚+1
𝑘 (𝑓)𝛼.

Hence (4.1) implies 𝜎𝑚+1
𝑘 (𝑓)𝛼 is the required factor of 𝑏2. Similarly, we can show

that 𝜎ℓ
𝑘(𝑓)𝛼 with

ℓ = min{𝑘 ∈ Z | 𝜎𝑘
𝑘(𝑓)𝛼 divides den(𝑤)} ≤ −1,

is the required factor of 𝑏2, if 𝑓𝛼 divides 𝜎𝑘(den(𝑤)).
In summary, there always exists a monic irreducible factor of 𝑏2 with multi-

plicity at least 𝛼 such that it is shift-equivalent to 𝑓 . Due to the shift-freeness
of 𝑏2, this factor is unique. The same conclusion holds when we switch the roles
of 𝑏1 and 𝑏2. Therefore, 𝑏1 ≈𝑘 𝑏2 by definition.
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For a given hypergeometric term, the above theorem reveals the relation be-
tween two residual forms of the shell with respect to a same kernel. To study the
case with different kernels, we need the following two lemmas.

Lemma 4.7. Let (𝐾,𝑆) be a rational normal form of 𝑓 ∈ F(𝑘) and 𝑟 a residual
form of 𝑆 w.r.t. 𝐾. Write 𝐾 = 𝑢/𝑣 with 𝑢, 𝑣 ∈ F[𝑘] and gcd(𝑢, 𝑣) = 1. Assume
that 𝑝 is a nontrivial monic irreducible factor of 𝑣 with multiplicity 𝛼 > 0. Then
the pair

(𝐾 ′, 𝑆′) =
(︂

𝑢

𝑣′𝜎𝑘(𝑝)𝛼 , 𝑝
𝛼𝑆

)︂
is a rational normal form of 𝑓 , in which 𝑣′ = 𝑣/𝑝𝛼. Moreover, there exists a
residual form 𝑟′ of 𝑆′ w.r.t. 𝐾 ′ whose significant denominator equals that of 𝑟.

Proof. Since 𝐾 is shift-reduced, so is 𝐾 ′. The first assertion follows by noticing

𝐾
𝜎𝑘(𝑆)
𝑆

= 𝑢

𝑣′𝑝𝛼

𝜎𝑘(𝑆)
𝑆

= 𝑢

𝑣′𝜎𝑘(𝑝)𝛼

𝜎𝑘(𝑝𝛼𝑆)
𝑝𝛼𝑆

= 𝐾 ′𝜎𝑘(𝑆′)
𝑆′ .

Let 𝑟 be of the form 𝑟 = 𝑎/𝑏 + 𝑞/𝑣, where 𝑎, 𝑏, 𝑞 ∈ F[𝑘], deg𝑘(𝑎) < deg𝑘(𝑏),
gcd(𝑎, 𝑏) = 1, 𝑏 is monic, shift-free and strongly coprime with 𝐾, and 𝑞 ∈ W𝐾 .
Then there exists a rational function 𝑔 ∈ F(𝑘) such that

𝑆 = 𝐾𝜎𝑘(𝑔) − 𝑔 + 𝑎

𝑏
+ 𝑞

𝑣′𝑝𝛼 ,

which implies

𝑆′ = 𝑝𝛼𝑆 = 𝑝𝛼𝐾𝜎𝑘(𝑔) − 𝑝𝛼𝑔 + 𝑎𝑝𝛼

𝑏
+ 𝑞

𝑣′

= 𝑢

𝑣′𝜎𝑘(𝑝)𝛼𝜎𝑘(𝑝𝛼𝑔) − 𝑝𝛼𝑔 + 𝑎𝑝𝛼

𝑏
+ 𝑞𝜎𝑘(𝑝)𝛼

𝑣′𝜎𝑘(𝑝)𝛼

= 𝐾 ′𝜎𝑘(𝑝𝛼𝑔) − 𝑝𝛼𝑔 + 𝑎𝑝𝛼

𝑏
+ 𝑞𝜎𝑘(𝑝)𝛼

𝑣′𝜎𝑘(𝑝)𝛼

Since 𝑏 is strongly coprime with 𝐾 and gcd(𝑎, 𝑏) = 1, we have gcd(𝑎𝑝𝛼, 𝑏) = 1.
Using step 3 and step 4 in Algorithm 3.17 computes polynomials 𝑎′, 𝑞′ ∈ F[𝑘]
with deg𝑘(𝑎′) < deg𝑘(𝑏), gcd(𝑎′, 𝑏) = 1 and 𝑞′ ∈ W𝐾

′ so that

𝑆′ ≡𝑘
𝑎′

𝑏
+ 𝑞′

𝑣′𝜎𝑘(𝑝)𝛼 mod V𝐾
′ .

Note that 𝑏 is strongly coprime with 𝐾, so 𝑏 is also strongly coprime with 𝐾 ′.
Since 𝑏 is shift-free, 𝑎′/𝑏+ 𝑞′/(𝑣′𝜎𝑘(𝑝)𝛼) is a residual form of 𝑆′ w.r.t. 𝐾 ′.
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Lemma 4.8. Let (𝐾,𝑆) be a rational normal form of 𝑓 ∈ F(𝑘) and 𝑟 a residual
form of 𝑆 w.r.t. 𝐾. Write 𝐾 = 𝑢/𝑣 with 𝑢, 𝑣 ∈ F[𝑘] and gcd(𝑢, 𝑣) = 1. Assume
that 𝑝 is a nontrivial monic irreducible factor of 𝑢 with multiplicity 𝛼 > 0. Then
the pair

(𝐾 ′, 𝑆′) =
(︃
𝑢′𝜎−1

𝑘 (𝑝)𝛼

𝑣
, 𝜎−1

𝑘 (𝑝)𝛼𝑆

)︃
is a rational normal form of 𝑓 , in which 𝑢′ = 𝑢/𝑝𝛼. Moreover, there exists a
residual form 𝑟′ of 𝑆′ w.r.t. 𝐾 ′ whose significant denominator equals that of 𝑟.

Proof. Similar to Lemma 4.7.

Proposition 4.9. Let (𝐾,𝑆) be a rational normal form of 𝑓 ∈ F(𝑘) and 𝑟 a
residual form of 𝑆 w.r.t. 𝐾. Then there exists a rational normal form (�̃�, 𝑆) of 𝑓
such that

1. �̃� has shift-free numerator and shift-free denominator;
2. there exists a residual form 𝑟 of 𝑆 w.r.t. �̃� whose significant denominator

is equal to that of 𝑟.

Proof. Let 𝐾 = 𝑢/𝑣 with 𝑢, 𝑣 ∈ F[𝑘] and gcd(𝑢, 𝑣) = 1, and 𝑏 be the significant
denominator of 𝑟.

Assume that 𝑣 is not shift-free. Then there exist two nontrivial monic irre-
ducible factors 𝑝 and 𝜎𝑚

𝑘 (𝑝) (𝑚 > 0) of 𝑣 with multiplicity 𝛼 > 0 and 𝛽 > 0,
respectively. W.l.o.g., assume further that 𝜎ℓ

𝑘(𝑝) is not a factor of 𝑣 for all ℓ < 0
and ℓ > 𝑚. By Lemma 4.7, 𝑓 has a rational normal form (𝐾 ′, 𝑆′), in which 𝐾 ′

has a denominator of the form den(𝐾 ′) = 𝑣′𝜎𝑘(𝑝)𝛼, where 𝑣′ = 𝑣/𝑝𝛼, and the
numerator remains to be 𝑢. Moreover, there exists a residual form of 𝑆′ w.r.t. 𝐾 ′

whose significant denominator is 𝑏. If 𝑚 = 1, then 𝜎𝑘(𝑝) is an irreducible fac-
tor of den(𝐾 ′) with multiplicity 𝛼 + 𝛽. Otherwise, it is an irreducible factor
of den(𝐾 ′) with multiplicity 𝛼. More importantly, 𝜎ℓ

𝑘(𝑝) is not a factor of den(𝐾 ′)
for all ℓ < 1. Iteratively using the argument, we arrive at a rational normal form
of 𝑓 such that 𝜎𝑚

𝑘 (𝑝) divides the denominator of the new kernel with certain mul-
tiplicity but 𝜎𝑖

𝑘(𝑝) does not whenever 𝑖 ̸= 𝑚, and the numerator remains to be 𝑢.
Moreover, there exists a residual form of the new shell with respect to the new
kernel whose significant denominator is equal to 𝑏. Applying the same argument
to each irreducible factor, we can obtain a rational normal form of 𝑓 whose kernel
has the numerator 𝑢 and a shift-free denominator, and whose shell has a residual
form with significant denominator 𝑏.

With Lemma 4.8, one can obtain a rational normal form of 𝑓 whose kernel
has a shift-free numerator and whose shell has a residual form with significant
denominator 𝑏.
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A nonzero rational function is said to be shift-free if it is shift-reduced and its
denominator and numerator are both shift-free. The relatedness of residual forms
with respect to different kernels is given below.

Theorem 4.10. Let (𝐾,𝑆), (𝐾 ′, 𝑆′) be two rational normal forms of 𝑓 ∈ F(𝑘),
and 𝑟, 𝑟′ residual forms of 𝑆 (w.r.t. 𝐾) and 𝑆′ (w.r.t. 𝐾 ′), respectively. Then the
significant denominators of 𝑟 and 𝑟′ are shift-related.

Proof. Let 𝑏 and 𝑏′ be the significant denominators of 𝑟 and 𝑟′, respectively. By
the above proposition, there exist two rational normal forms (�̃�, 𝑆) and (�̃� ′, 𝑆′)
of 𝑓 such that their kernels are shift-free and their shells have residual forms
whose significant denominators are 𝑏 and 𝑏′, respectively.

According to Theorem 4.4, the respective denominators 𝑣 and 𝑣′ of �̃� and �̃� ′

are shift-related. It follows that for a nontrivial monic irreducible factor 𝑝 of 𝑣
with multiplicity 𝛼 > 0, there exists a unique factor 𝜎ℓ

𝑘(𝑝) with ℓ ∈ Z of 𝑣′ with
the same multiplicity. W.l.o.g., we may assume ℓ ≤ 0. Otherwise, we can switch
the roles of two pairs (�̃�, 𝑆) and (�̃� ′, 𝑆′). If ℓ < 0, a repeated use of Lemma 4.7
leads to a new rational normal form (�̃� ′′, 𝑆′′) from (�̃� ′, 𝑆′), such that �̃� ′′ is shift-
free with the same numerator as �̃� ′, and 𝑝 is a factor of the denominator of �̃� ′′

with the same multiplicity 𝛼. Moreover, 𝑆′′ has a residual form w.r.t. 𝐾 ′′ with
significant denominator 𝑏′.

Applying the above argument to each irreducible factor and using Lemma 4.8
for numerators in the same fashion, we can obtain two new rational normal forms
whose kernels are equal and whose shells have respective residual forms with
significant denominators 𝑏 and 𝑏′. It follows from Theorem 4.6 that 𝑏 and 𝑏′ are
shift-related.

4.3 Sum of two residual forms

To compute a telescoper for a given bivariate hypergeometric terms by the mod-
ified Abramov-Petkovšek reduction, we are confronted with the difficulty that
the sum of two residual forms is not necessarily a residual form, as mentioned at
the beginning of this chapter. This is because the least common multiple of two
shift-free polynomials is not necessarily shift-free.

The goal of this section is to show that the sum of two residual forms is
congruent to a residual form modulo V𝐾 .

Example 4.11. Let 𝐾 = 1/𝑘, 𝑟 = 1/(2𝑘 + 1) and 𝑠 = 1/(2𝑘 + 3). Then both 𝑟
and 𝑠 are residual forms w.r.t. 𝐾, but their sum is not, because the denominator
(2𝑘+ 1)(2𝑘+ 3) is not shift-free. However, we can still find an equivalent residual
form. For example, we have

𝑟 + 𝑠 ≡𝑘 − 1
2(2𝑘 + 1) + 1

2𝑘 mod V𝐾 .



34 Chapter 4. Further Properties of Residual Forms

Note that the residual form is not unique. Another possible choice is

𝑟 + 𝑠 ≡𝑘
1

3(2𝑘 + 3) + 1
3𝑘 mod V𝐾 .

Lemma 4.12. With Convention 3.2, let 𝑟, 𝑠 ∈ F(𝑘) be two residual forms w.r.t. 𝐾,
i.e., 𝑟 and 𝑠 can be written as

𝑟 = 𝑎

𝑓
+ 𝑝

𝑣
and 𝑠 = 𝑏

𝑔
+ 𝑞

𝑣
,

where 𝑎, 𝑓, 𝑏, 𝑔 ∈ F[𝑘], deg𝑘(𝑎) < deg𝑘(𝑓), deg𝑘(𝑏) < deg𝑘(𝑔), 𝑝, 𝑞 ∈ W𝐾 , and 𝑓, 𝑔
are shift-free and strongly coprime with 𝐾. Assume that gcd(𝑎, 𝑓) = gcd(𝑏, 𝑔) = 1.
Then for all 𝜆, 𝜇 ∈ F, 𝜆𝑟 + 𝜇𝑠 is a residual form w.r.t. 𝐾 if and only if the least
common multiple of 𝑓 and 𝑔 is shift-free.

Proof. Let ℎ be the least common multiple of 𝑓 and 𝑔. Then

𝜆𝑟 + 𝜇𝑠 = 𝜆𝑎(ℎ/𝑓) + 𝜇𝑏(ℎ/𝑔)
ℎ

+ 𝜆𝑝+ 𝜇𝑞

𝑣
. (4.2)

We first show the sufficiency. Assume that ℎ is shift-free. It is clear that

deg𝑘(𝜆𝑎(ℎ/𝑓) + 𝜇𝑏(ℎ/𝑔)) < deg𝑘(ℎ).

Since W𝐾 is a F-vector space, we have 𝜆𝑝 + 𝜇𝑞 ∈ W𝐾 . Note that 𝑓 and 𝑔 are
strongly coprime with 𝐾, so is ℎ. By definition, 𝜆𝑟+𝜇𝑠 is a residual form w.r.t. 𝐾.

To show the necessity, we suppose otherwise that ℎ is not shift-free. Since
𝜆𝑟 + 𝜇𝑠 is a residual form w.r.t. 𝐾, there exist 𝑏*, ℎ* ∈ F[𝑘] and 𝑞* ∈ W𝐾

with deg𝑘(𝑏*) < deg𝑘(ℎ*), and ℎ* shift-free and strongly coprime with 𝐾, such
that

𝜆𝑟 + 𝜇𝑠 = 𝑏*

ℎ* + 𝑞*

𝑣
.

It follows from (4.2) that

(𝜆𝑎(ℎ/𝑓) + 𝜇𝑏(ℎ/𝑔))𝑣
ℎ

= 𝑏*𝑣

ℎ* + 𝑞* − 𝜆𝑝− 𝜇𝑞. (4.3)

Since ℎ is not shift-free and 𝑓, 𝑔 are shift-free, there exist nontrivial monic irre-
ducible factors 𝑝′ and 𝜎ℓ

𝑘(𝑝′) of ℎ such that 𝑝′ | 𝑓 and 𝜎ℓ
𝑘(𝑝′) | 𝑔, where ℓ is a

nonzero integer. Because gcd(𝑎, 𝑓) = gcd(𝑏, 𝑔) = 1 and ℎ | 𝑓𝑔, so
• 𝑝′ - (ℎ/𝑓) and 𝑝′ - 𝑎, but 𝑝′ | (ℎ/𝑔);

• 𝜎ℓ
𝑘(𝑝′) - (ℎ/𝑔) and 𝜎ℓ

𝑘(𝑝) - 𝑏, but 𝜎ℓ
𝑘(𝑝′) | (ℎ/𝑓).

Since ℎ is also strongly coprime with 𝐾, 𝑝′ and 𝜎ℓ
𝑘(𝑝′) are coprime with 𝑣. Thus

they both divide the denominator of the left-hand side of (4.3). By partial fraction
decomposition, 𝑝′ and 𝜎ℓ

𝑘(𝑝′) both divide ℎ*, a contradiction as ℎ* is shift-free.
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To describe the shift-freeness of the least common multiple of two polynomials,
we introduce the following notions.

Definition 4.13. Let 𝑓 and 𝑔 be two nonzero polynomials in F[𝑘]. According
to [10, §3], the dispersion of 𝑓 and 𝑔 is defined to be the largest nonnegative
integer ℓ such that 𝑓 and 𝜎ℓ

𝑘(𝑔) have a nontrivial common divisor, or −1 if no
such ℓ exists. Moreover, we say that 𝑓 and 𝑔 are shift-coprime if gcd(𝑓, 𝜎ℓ

𝑘(𝑔)) = 1
for all nonzero integer ℓ.

It is clear that the least common multiple of two shift-free polynomials is
shift-free if and only if these two polynomials are shift-coprime. Let 𝑓 and 𝑔
be two nonzero shift-free polynomials in F[𝑘]. By polynomial factorization and
dispersion computation (see [10]), one can uniquely decompose

𝑔 = 𝑔𝜎
ℓ1
𝑘

(︀
𝑝

𝑚1
1
)︀

· · ·𝜎ℓ𝜌

𝑘

(︁
𝑝

𝑚𝜌
𝜌

)︁
, (4.4)

where 𝑔 is shift-coprime with 𝑓 , 𝑝1, . . . , 𝑝𝜌 are pairwise distinct and monic irre-
ducible factors of 𝑓 , ℓ1, . . . , ℓ𝜌 are nonzero integers, 𝑚1, . . . ,𝑚𝜌 are multiplicities
of the factors 𝜎ℓ1

𝑘 (𝑝1), . . ., 𝜎ℓ𝜌

𝑘 (𝑝𝜌) in 𝑔, respectively. We refer to (4.4) as the
shift-coprime decomposition of 𝑔 w.r.t. 𝑓 .

Remark 4.14. The factors 𝑔, 𝜎ℓ1
𝑘

(︀
𝑝

𝑚1
1
)︀
, . . . , 𝜎ℓ𝜌

𝑘

(︁
𝑝

𝑚𝜌
𝜌

)︁
in (4.4) are pairwise

coprime, since 𝑓 and 𝑔 are shift-free.

To construct a residual form congruent to the sum of two given residual ones,
we need three technical lemmas. The first one corresponds to the kernel reduction
in [15].

Lemma 4.15. With Convention 3.2, assume that 𝑝1, 𝑝2 are in F[𝑘] and 𝑚 in N.
Then there exist 𝑞1, 𝑞2 in W𝐾 such that

𝑝1∏︀𝑚
𝑖=0 𝜎

𝑖
𝑘(𝑣)

≡𝑘
𝑞1
𝑣

mod V𝐾 and 𝑝2∏︀𝑚
𝑗=1 𝜎

−𝑗
𝑘 (𝑢)

≡𝑘
𝑞2
𝑣

mod V𝐾 .

Proof. To prove the first congruence, let 𝑤𝑚 =
∏︀𝑚

𝑖=0 𝜎
𝑖
𝑘(𝑣).

We proceed by induction on 𝑚. If 𝑚 = 0, then the conclusion holds by
Lemma 3.10. Assume that the lemma holds for 𝑚 − 1 with 𝑚 > 0. Consider
the equality

𝑝1
𝑤𝑚

= 𝐾𝜎𝑘

(︂
𝑠

𝑤𝑚−1

)︂
− 𝑠

𝑤𝑚−1
+ 𝑡

𝑤𝑚−1
,

where 𝑠, 𝑡 ∈ F[𝑘] are to be determined. This equality holds if and only if

𝜎𝑘(𝑠)𝑢+ (𝑡− 𝑠)𝜎𝑚
𝑘 (𝑣) = 𝑝1.
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Since 𝑢 and 𝜎𝑚
𝑘 (𝑣) are coprime, such 𝑠 and 𝑡 can be computed by the extended

Euclidean algorithm. Thus, 𝑝1/𝑤𝑚 ≡𝑘 𝑡/𝑤𝑚−1 mod V𝐾 . Consequently, 𝑝1/𝑤𝑚

has a required residual form by the induction hypothesis.
To prove the second congruence, we use the identity

𝑝2

𝜎−1
𝑘 (𝑢)

= 𝐾𝜎𝑘

(︃
− 𝑝2

𝜎−1
𝑘 (𝑢)

)︃
−

(︃
− 𝑝2

𝜎−1
𝑘 (𝑢)

)︃
+ 𝜎𝑘 (𝑝2)

𝑣
,

which implies that 𝑝2/𝜎
−1
𝑘 (𝑢) ≡𝑘 𝜎𝑘 (𝑝2) /𝑣 mod V𝐾 . By Lemma 3.10, there exists

a polynomial 𝑞2 ∈ W𝐾 such that 𝑞2/𝑣 is a residual form of 𝑝2/𝜎
−1
𝑘 (𝑢) w.r.t. 𝐾.

Thus the conclusion holds for 𝑚 = 0. Assume that the congruence holds for 𝑚−1
with 𝑚 > 0. The induction can be completed as in the proof for 𝑝1/𝑤𝑚.

The next lemma provides us with flexibility to rewrite a rational function
modulo V𝐾 .

Lemma 4.16. Let 𝐾 ∈ F(𝑘) be nonzero and shift-reduced. Then for every ratio-
nal function 𝑓 ∈ F(𝑘) and every positive integer ℓ,

𝑓 ≡𝑘 𝜎
ℓ
𝑘(𝑓)

ℓ−1∏︁
𝑖=0

𝜎𝑖
𝑘(𝐾) ≡𝑘 𝜎

−ℓ
𝑘 (𝑓)

ℓ∏︁
𝑖=1

𝜎−𝑖
𝑘

(︂
1
𝐾

)︂
mod V𝐾 .

Proof. Let’s show the first congruence by induction on ℓ. For ℓ = 1, the identity

𝑓 = 𝐾𝜎𝑘(−𝑓) − (−𝑓) + 𝜎𝑘(𝑓)𝐾

implies that 𝑓 is congruent to 𝜎𝑘(𝑓)𝐾 modulo V𝐾 . Assume that it holds for ℓ−1
with ℓ > 1. Set 𝑤ℓ =

∏︀ℓ−1
𝑖=0 𝜎

𝑖
𝑘(𝐾). Then by the induction hypothesis,

𝑓 ≡𝑘 𝜎
ℓ−1
𝑘 (𝑓)𝑤ℓ−1 mod V𝐾 .

Moreover, 𝜎ℓ−1
𝑘 (𝑓)𝑤ℓ−1 ≡𝑘 𝜎

ℓ
𝑘(𝑓)𝑤ℓ mod V𝐾 by the induction base, in which 𝑓

is replaced with 𝜎ℓ−1
𝑘 (𝑓)𝑤ℓ−1. Hence, 𝑓 is congruent to 𝜎ℓ

𝑘(𝑓)𝑤ℓ modulo V𝐾 .
The second congruence can be shown similarly. For the base case ℓ = 1,

let 𝑟 = 𝜎−1
𝑘 (𝑓)𝜎−1

𝑘 (1/𝐾). Then the identity 𝑓 = 𝐾𝜎𝑘(𝑟) − 𝑟 + 𝑟 implies that 𝑓
is congruent to 𝑟 modulo V𝐾 . We can then proceed as in the proof of the first
congruence.

Lemma 4.17. With Convention 3.2, let 𝑎, 𝑏 ∈ F[𝑘] with 𝑏 ̸= 0. Assume that 𝑏
is shift-free and strongly coprime with 𝐾. Assume further that 𝜎ℓ

𝑘(𝑏) is strongly
coprime with 𝐾 for some integer ℓ, then 𝑎/𝑏 has a residual form 𝑐/𝜎ℓ

𝑘(𝑏) + 𝑞/𝑣
w.r.t. 𝐾, where 𝑐 ∈ F[𝑘] with deg𝑘(𝑐) < deg𝑘(𝑏) and 𝑞 ∈ W𝐾 .
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Proof. First, consider the case in which ℓ ≥ 0. If ℓ = 0, then there exist two
polynomials 𝑐, 𝑝 ∈ F[𝑘] with deg𝑘(𝑐) < deg𝑘(𝑏) such that 𝑎/𝑏 = 𝑐/𝑏 + 𝑝. The
lemma follows from Remark 3.11. Assume that ℓ > 0. By the first congruence of
Lemma 4.16,

𝑎

𝑏
≡𝑘 𝜎

ℓ
𝑘

(︁𝑎
𝑏

)︁(︃ℓ−1∏︁
𝑖=0

𝜎𝑖
𝑘(𝐾)

)︃
= 𝜎ℓ

𝑘(𝑎)
𝜎ℓ

𝑘(𝑏)

∏︀ℓ−1
𝑖=0 𝜎

𝑖
𝑘(𝑢)∏︀ℓ−1

𝑖=0 𝜎
𝑖
𝑘(𝑣)

mod V𝐾 .

Note that 𝜎ℓ
𝑘(𝑏) is strongly coprime with 𝑣 by assumption. Then it is coprime

with the product 𝑣𝜎𝑘(𝑣) · · ·𝜎ℓ−1
𝑘 (𝑣). By partial fraction decomposition, we get

𝑎

𝑏
≡𝑘

�̃�

𝜎ℓ
𝑘(𝑏)

+ 𝑞∏︀ℓ−1
𝑖=0 𝜎

𝑖
𝑘(𝑣)

mod V𝐾 ,

where �̃�, 𝑞 ∈ F[𝑘] and deg𝑘 �̃� < deg𝑘(𝑏). By the first congruence of Lemma 4.15,
the second summand in the right-hand side of the above congruence can be re-
placed by a residual form whose denominator is equal to 𝑣. The first assertion
holds.

The case ℓ < 0 can be handled in the same way, in which the second congru-
ences of Lemmas 4.16 and 4.15 will be used instead of the first ones.

Remark 4.18. With the assumptions of the above lemma, let 𝑝 be a nontrivial
factor of 𝑏 with gcd(𝑏′, 𝑝) = 1 where 𝑏′ = 𝑏/𝑝. Assume that 𝜎ℓ

𝑘(𝑝) is also strongly
coprime with 𝐾. Then by partial fraction decomposition and Lemma 4.17, there
exist 𝑐, 𝑞 ∈ F[𝑘] with deg𝑘(𝑐) < deg𝑘(𝑏) and 𝑞 ∈ W𝐾 such that 𝑐/(𝑏′𝜎ℓ

𝑘(𝑝)) + 𝑞/𝑣
is a residual form of 𝑎/𝑏 w.r.t. 𝐾.

We will refer to Lemma 4.17 and Remark 4.18 as the shifting property of
significant denominators. Now we are ready to present the main result of this
section.

Theorem 4.19. With Convection 3.2, let 𝑟 and 𝑠 be two residual forms w.r.t. 𝐾.
Then there exists a residual form 𝑡 congruent to 𝑠 modulo V𝐾 so that for all
constants 𝜆, 𝜇 ∈ F, the sum 𝜆𝑟+𝜇𝑡 is a residual form w.r.t. 𝐾 congruent to 𝜆𝑟+𝜇𝑠
modulo V𝐾 .

Proof. Since 𝑟 and 𝑠 are two residual forms w.r.t. 𝐾, they can be written as

𝑟 = 𝑎

𝑓
+ 𝑝

𝑣
and 𝑠 = 𝑏

𝑔
+ 𝑞

𝑣
, (4.5)

where 𝑎, 𝑓, 𝑏, 𝑔 ∈ F[𝑘], deg𝑘(𝑎) < deg𝑘(𝑓), deg𝑘(𝑏) < deg𝑘(𝑔), 𝑝, 𝑞 ∈ W𝐾 , and 𝑓, 𝑔
are shift-free and strongly coprime with 𝐾.
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Assume that (4.4) is the shift-coprime decomposition of 𝑔 w.r.t. 𝑓 . Define
𝑃𝑖 = 𝜎

ℓ𝑖
𝑘 (𝑝𝑖) for 𝑖 = 1, . . . , 𝜌. By Remark 4.14 and partial fraction decomposition,

𝑏

𝑔
= 𝑏0

𝑔
+

𝜌∑︁
𝑖=1

𝑏𝑖

𝑃
𝑚𝑖
𝑖

, (4.6)

where 𝑏0, 𝑏1, . . . , 𝑏𝜌 ∈ F[𝑘], deg𝑘(𝑏0) < deg𝑘(𝑔) and deg𝑘(𝑏𝑖) < 𝑚𝑖 deg𝑘(𝑝𝑖). Note
that 𝑝𝑖 = 𝜎

−ℓ𝑖
𝑘 (𝑃𝑖), which is a factor of 𝑓 . Thus it is strongly coprime with 𝐾. So

we can apply Lemma 4.17 to each fraction 𝑏𝑖/𝑃
𝑚𝑖
𝑖 in (4.6) to get

𝑏

𝑔
≡𝑘

𝑏0
𝑔

+
𝜌∑︁

𝑖=1

𝑏′
𝑖

𝑝
𝑚𝑖
𝑖

+ 𝑞′

𝑣
mod V𝐾 , (4.7)

where 𝑏′
1, . . . , 𝑏

′
𝜌 ∈ F[𝑘], deg𝑘(𝑏′

𝑖) < 𝑚𝑖 deg𝑘(𝑝𝑖) and 𝑞′ ∈ W𝐾 .
Let ℎ = 𝑔

∏︀𝜌
𝑖=1 𝑝

𝑚𝑖
𝑖 . Then ℎ is shift-free and strongly coprime with 𝐾 as

both 𝑓 and 𝑔 are. Since 𝑓 is shift-free, all its factors are shift-coprime with 𝑓 , so
are the 𝑝𝑖’s, and so is ℎ. Let 𝑡 be the sum of 𝑞/𝑣 and the rational function in the
right-hand side of (4.7). Then there exist 𝑏* ∈ F[𝑘] with deg𝑘(𝑏*) < deg𝑘(ℎ) and
𝑞* ∈ W𝐾 such that

𝑡 = 𝑏*

ℎ
+ 𝑞*

𝑣
.

Since 𝑓 and ℎ are shift-coprime, their least common multiple is shift-free. There-
fore, 𝜆𝑟+𝜇𝑡 is a residual form w.r.t. 𝐾 by Lemma 4.12, and 𝜆𝑟+𝜇𝑡 is congruent
to 𝜆𝑟 + 𝜇𝑠 modulo V𝐾 .

The above proof contains an algorithm, which can translate a residual form
properly according to a given one, so that the resulting sum is again a residual
form. We outline this algorithm as follows.

Algorithm 4.20 (Translation of Discrete Residual Forms).
Input: A shift-reduced rational function 𝐾 ∈ F(𝑘), a polynomial 𝑓 ∈ F[𝑘] which
is shift-free and strongly coprime with 𝐾, and a residual form 𝑠 w.r.t. 𝐾 of the
form (4.5).
Output: A rational function 𝑤 ∈ F(𝑘) and a residual form 𝑡 w.r.t. 𝐾 such that

𝑠 = 𝐾𝜎𝑘(𝑤) − 𝑤 + 𝑡,

and the least common multiple of the given polynomial 𝑓 and the significant
denominator of 𝑡 is shift-free.

1 Compute the shift-coprime decomposition, say (4.4), of 𝑔 w.r.t. 𝑓 .

2 Set 𝑃𝑖 = 𝜎
ℓ𝑖
𝑘 (𝑝𝑖) for 𝑖 = 1, . . . , 𝜌.

3 Compute the partial fraction decomposition (4.6) of 𝑏/𝑔.
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4 Apply Lemma 4.17 to each 𝑏𝑖/𝑃
𝑚𝑖
𝑖 to find 𝑤𝑖 ∈ F(𝑘) and 𝑏′

𝑖, 𝑞
′
𝑖 ∈ F[𝑘]

with deg𝑘(𝑏′
𝑖) < 𝑚𝑖 deg𝑘(𝑝𝑖) and 𝑞′

𝑖 ∈ W𝐾 such that

𝑏𝑖

𝑃
𝑚𝑖
𝑖

= 𝐾𝜎𝑘(𝑤𝑖) − 𝑤𝑖 + 𝑏′
𝑖

𝑝
𝑚𝑖
𝑖

+ 𝑞′
𝑖

𝑣
.

5 Set 𝑤 =
∑︀𝜌

𝑖=1𝑤𝑖 and

𝑡 = 𝑏0
𝑔

+
𝜌∑︁

𝑖=1

𝑏′
𝑖

𝑝
𝑚𝑖
𝑖

+
∑︀𝜌

𝑖=1 𝑞
′
𝑖 + 𝑞

𝑣
;

and return.





Chapter 5

Creative Telescoping for
Hypergeometric Terms 1

In the study of combinatorics, we often encounter problems about evaluating
definite sums or proving identities of hypergeometric terms. These terms are
exactly nonzero solutions of first-order (partial) difference equations with poly-
nomial coefficients. Traditionally [56], such problems were solved case by case
using methods that do not give rise to general algorithms. Based on a series
of work [65, 66, 67, 68, 69, 70, 71] in early 1990s, Wilf and Zeilberger devel-
oped a constructive theory, which is now known as Wilf-Zeilberger’s theory. This
theory provides a systematic solution to a large class of problems concerning
hypergeometric summations and identities, and has wide application in the ar-
eas of combinatorics and physics. The key step of Wilf-Zeilberger’s theory is to
compute a telescoper for a given hypergeometric term. The efficiency of the com-
putation determines the utility of this theory. During the past 26 years, numerous
algorithms have been developed for computing telescopers. In early 1990s, Zeil-
berger [70] first came up with an algorithm based on elimination techniques. This
algorithm was improved later by Takayama [61] and Chyzak, Salvy [27], respec-
tively. In 1990, Zeilberger [69] developed another algorithm, known as Zeilberger’s
(fast) algorithm, based on a parametrization of Gosper’s algorithm. 15 years later,
Apagodu and Zeilberger designed a new algorithm which reduced the problem to
solving a linear system. The common feature of the above algorithms is that there
was no way to obtain a telescoper without also computing a certificate. In many
applications, however, certificates are not needed, and they typically require more
storage space than telescopers do. It would be more efficient to avoid computing
certificates if we don’t need them. To achieve this goal, Bostan et al. [14] presented
a new algorithm for bivariate rational functions in the differential case, based on
the Hermite reduction. This algorithm separates the computation of telescopers
and the corresponding certificates. So far, this approach has been generalized to

1The main results in this chapter are joint work with S. Chen, M. Kauers, Z. Li, published
in [19].
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several instances including rational functions in three variables [24], multivariate
rational functions [16], bivariate hyperexponential functions [15] and bivariate
algebraic functions [23]. These algorithms turn out to be more efficient than the
classical algorithms in practice. However, all these algorithms only work for the
differential case.

In this chapter, we discuss how to translate their ideas into the hypergeo-
metric setting. Using the modified Abramov-Petkovšek reduction, we develop a
new creative telescoping algorithm. This new algorithm separates the computa-
tion of telescopers from that of certificates. We have implemented the new algo-
rithm in Maple 18 and compare it to the built-in Maple procedure Zeilberger in
the package SumTools[Hypergeometric], which is based on Zeilberger’s algo-
rithm. The experimental results indicate that the new algorithm is faster than
the Maple procedure if it returns a normalized certificate, and the new algorithm
is much more efficient if it omits the computation of certificates.

5.1 Bivariate hypergeometric terms

In this section, we translate terminology concerning univariate hypergeometric
terms to bivariate ones and introduce the notions of telescopers as well as certifi-
cates for bivariate hypergeometric terms. Moreover, we recall [67, 4] an existence
criterion for telescopers.

Let K be a field of characteristic zero, and K(𝑛, 𝑘) be the field of rational
functions in 𝑛 and 𝑘 over K. Let 𝜎𝑛 and 𝜎𝑘 be the shift operators w.r.t. 𝑛 and 𝑘,
respectively, defined by

𝜎𝑛(𝑓(𝑛, 𝑘)) = 𝑓(𝑛+ 1, 𝑘) and 𝜎𝑘(𝑓(𝑛, 𝑘)) = 𝑓(𝑛, 𝑘 + 1),

for any rational function 𝑓 ∈ K(𝑛, 𝑘). Clearly, 𝜎𝑛 and 𝜎𝑘 are both automorphisms
of K. The pair (K(𝑛, 𝑘), {𝜎𝑛, 𝜎𝑘}) forms a partial difference field. A partial differ-
ence ring extension of (K(𝑛, 𝑘), {𝜎𝑛, 𝜎𝑘}) is a ring D containing K(𝑛, 𝑘) together
with two distinguished endomorphism 𝜎𝑛 and 𝜎𝑘 from D to itself, whose restric-
tions to K(𝑛, 𝑘) agree with the two automorphisms defined before, respectively.

Analogous to the univariate case in Chapter 2, an element 𝑐 ∈ D is called a
constant if it is invariant under the applications of 𝜎𝑛 and 𝜎𝑘. It is readily seen
that all constants in D form a subring of D. Moreover, Theorem 2 in [9] yields
that the set of all constants in K(𝑛, 𝑘) w.r.t. 𝜎𝑛 and 𝜎𝑘 is exactly the field K.
Definition 5.1. Let D be a partial difference ring extension of K(𝑛, 𝑘). A nonzero
element 𝑇 ∈ D is called a hypergeometric term over K(𝑛, 𝑘) if it is invertible and
there exist 𝑓, 𝑔 ∈ K(𝑛, 𝑘) such that 𝜎𝑛(𝑇 ) = 𝑓𝑇 and 𝜎𝑘(𝑇 ) = 𝑔𝑇 . We call 𝑓 and 𝑔
the shift-quotients of 𝑇 w.r.t. 𝑛 and 𝑘, respectively.

In the rest of this chapter and also the next chapter, whenever we mention
hypergeometric terms, they always belong to some difference ring extension D
of K(𝑛, 𝑘), unless specified otherwise.
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Let F be the field K(𝑛), and F⟨𝑆𝑛⟩ be the ring of linear recurrence operators
in 𝑛, in which the commutation rule is that 𝑆𝑛𝑟 = 𝜎𝑛(𝑟)𝑆𝑛 for all 𝑟 ∈ F. The
application of an operator 𝐿 =

∑︀𝜌
𝑖=0 ℓ𝑖𝑆

𝑖
𝑛 ∈ F⟨𝑆𝑛⟩ to a hypergeometric term 𝑇

is defined as

𝐿(𝑇 ) =
𝜌∑︁

𝑖=0
ℓ𝑖𝜎

𝑖
𝑛(𝑇 ).

Definition 5.2. Let 𝑇 be a hypergeometric term over F(𝑘). A nonzero recur-
rence operator 𝐿 ∈ F⟨𝑆𝑛⟩ is called a telescoper for 𝑇 w.r.t. 𝑘 if there exists a
hypergeometric term 𝐺 such that

𝐿(𝑇 ) = Δ𝑘(𝐺).

We call 𝐺 a certificate of 𝐿.

In contrast to the differential case, telescopers for hypergeometric terms do
not always exist. To describe the existence of telescopers concisely, we recall [4]
the definitions of integer-linear polynomials and proper terms.

Definition 5.3. An irreducible polynomial 𝑝 ∈ K[𝑛, 𝑘] is called integer-linear
over K if there exists 𝑃 ∈ K[𝑧] and 𝜆, 𝜇 ∈ Z such that 𝑝 = 𝑃 (𝜆𝑛 + 𝜇𝑘). A
polynomial in K[𝑛, 𝑘] is called integer-linear over K if all of its irreducible factors
are integer-linear. A rational function in K(𝑛, 𝑘) is called integer-linear over K
if its denominator and numerator are both integer-linear.

Definition 5.4. A hypergeometric term 𝑇 over K(𝑛, 𝑘) is called a factorial term
if the shift-quotients 𝜎𝑛(𝑇 )/𝑇 and 𝜎𝑘(𝑇 )/𝑇 are integer-linear over K. A proper
term over K(𝑛, 𝑘) is the product of a factorial term and a polynomial in K[𝑛, 𝑘].

We have the following existence criterion for telescopers according to [67, 4].

Theorem 5.5 (Existence criterion). Let 𝑇 be a hypergeometric term over F(𝑘)
and let 𝐾 = 𝑢/𝑣 with 𝑢, 𝑣 ∈ F[𝑘], gcd(𝑢, 𝑣) = 1 be a kernel of 𝑇 w.r.t. 𝑘 and 𝑆 a
corresponding shell of 𝑇 . Assume that applying Algorithm 3.17, i.e., the modified
Abramov-Petkovšek reduction w.r.t. 𝑘 to 𝑇 yields

𝑇 = Δ𝑘(𝑔𝐻) +
(︁𝑎
𝑏

+ 𝑞

𝑣

)︁
𝐻, (5.1)

where 𝑔 ∈ F(𝑘), 𝐻 = 𝑇/𝑆, and 𝑎/𝑏 + 𝑞/𝑣 is a residual form of 𝑆 w.r.t. 𝐾,
that is, 𝑎, 𝑏 ∈ F[𝑘] with deg𝑘(𝑎) < deg𝑘(𝑏), 𝑏 is shift-free and strongly coprime
with 𝐾 w.r.t. 𝑘, and 𝑞 ∈ W𝐾 . Then 𝑇 has a telescoper w.r.t. 𝑘 if and only if 𝑏 is
integer-linear over K.

Proof. Since the kernel 𝐾 = 𝜎𝑘(𝐻)/𝐻 is shift-reduced w.r.t. 𝑘, it follows from [8,
Theorem 8] that 𝐻 is a factorial term over F(𝑘). Thus 𝐾 is integer-linear over K,
and then so are the numerator 𝑢 and the denominator 𝑣.
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We first show the sufficiency. Since 𝑏 is integer-linear over K, the term 𝐻/(𝑏𝑣)
is again a factorial term. Hence(︁𝑎

𝑏
+ 𝑞

𝑣

)︁
𝐻 = (𝑎𝑣 + 𝑏𝑞)𝐻

𝑏𝑣

is a proper term, whose telescopers exist according to the fundamental lemma
in [67]. By (5.1), 𝑇 has a telescoper w.r.t. 𝑘.

To show the necessity, assume that 𝑇 has a telescoper w.r.t. 𝑘. Then the
term (𝑎/𝑏+ 𝑞/𝑣)𝐻 is proper by [4, Theorem 10]. Thus 𝐻/(𝑏𝑣) is a factorial term.
Note that

𝜎𝑘(𝐻/(𝑏𝑣))
𝐻/(𝑏𝑣) = 𝑢

𝜎𝑘(𝑣)
𝑏

𝜎𝑘(𝑏) .

Hence, 𝑏/𝜎𝑘(𝑏) is integer-linear over K as 𝑢, 𝑣 are integer-linear. Because 𝑏 is
shift-free w.r.t. 𝑘, so gcd(𝑏, 𝜎𝑘(𝑏)) ∈ F. The assertion follows by noticing that all
elements in F are integer-linear.

5.2 Telescoping via reductions

Let 𝑇 be a hypergeometric term over F(𝑘). If there exists a telescoper for 𝑇
w.r.t. 𝑘 by Theorem 5.5, then all telescopers for 𝑇 w.r.t. 𝑘 together with the zero
operator form a left ideal of the principal ideal ring F⟨𝑆𝑛⟩. We refer to a generator
of this ideal as a minimal telescoper for 𝑇 w.r.t. 𝑘. Roughly speaking, a minimal
telescoper is a telescoper of the minimal order.

Since 1990, various algorithms [69, 70, 71, 44, 6] have been designed to com-
pute a minimal telescoper for a given hypergeometric term, typically the clas-
sical Zeilberger’s algorithm [69]. When telescopers exist, Zeilberger’s algorithm
constructs a telescoper for a given hypergeometric term 𝑇 by iteratively using
Gosper’s algorithm to detect the summability of 𝐿(𝑇 ) for an ansatz

𝐿 =
𝜌∑︁

𝑖=0
ℓ𝑖𝑆

𝑖
𝑛 ∈ F⟨𝑆𝑛⟩,

where ℓ𝑖 are indeterminates. In order to get a telescoper, one needs to solve a linear
system with unknowns ℓ𝑖 and also unknowns from the certificate. Any nontrivial
solution gives rise to a telescoper and a corresponding certificate simultaneously.
There is no obvious way to avoid the computation of certificates in Zeilberger’s
algorithm.

In order to separate the computations of telescopers and certificates, we follow
the ideas in the continuous case [14, 18, 16, 15], and use the modified Abramov-
Petkovšek reduction to develop a creative telescoping algorithm. The algorithm
is outlined below.
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Algorithm 5.6 (Reduction-based creative telescoping).
Input: A hypergeometric term 𝑇 over F(𝑘).
Output: A minimal telescoper for 𝑇 w.r.t. 𝑘 and a corresponding certificate if
telescopers exist; “No telescoper exists!”, otherwise.

1 Find a kernel 𝐾 and shell 𝑆 of 𝑇 w.r.t. 𝑘 such that 𝑇 = 𝑆𝐻

with 𝐾 = 𝜎𝑘(𝐻)/𝐻.

2 Apply the modified Abramov-Petkovšek reduction to 𝑇 to get

𝑇 = Δ𝑘(𝑔0𝐻) + 𝑟0𝐻. (5.2)

If 𝑟0 = 0, then return (1, 𝑔0𝐻).

3 If the denominator of 𝑟0 is not integer-linear, return “No telescoper exists!”.

4 Set 𝑁 = 𝜎𝑛(𝐻)/𝐻 and 𝑅 = ℓ0𝑟0, where ℓ0 is an indeterminate.
For 𝑖 = 1, 2, . . . do
4.1 View 𝜎𝑛(𝑟𝑖−1)𝑁𝐻 as a hypergeometric term with kernel 𝐾 and

shell 𝜎𝑛(𝑟𝑖−1)𝑁 . Using Algorithm 3.5 and Algorithm 3.16 w.r.t. 𝐾,
find 𝑔′

𝑖 ∈ F and a residual form 𝑟𝑖 w.r.t. 𝐾 such that

𝜎𝑛(𝑟𝑖−1)𝑁𝐻 = Δ𝑘(𝑔′
𝑖𝐻) + 𝑟𝑖𝐻.

4.2 Set 𝑔𝑖 = 𝜎𝑛(𝑔𝑖−1)𝑁 + 𝑔′
𝑖, so that

𝜎𝑖
𝑛(𝑇 ) = Δ𝑘(𝑔𝑖𝐻) + 𝑟𝑖𝐻. (5.3)

4.3 Apply Algorithm 4.20 to 𝑟𝑖 w.r.t. 𝐾 and 𝑅, to find 𝑔𝑖, 𝑟𝑖 ∈ F(𝑘)
such that 𝑟𝑖 ≡𝑘 𝑟𝑖 mod V𝐾 ,

𝜎𝑖
𝑛(𝑇 ) = Δ𝑘(𝑔𝑖𝐻) + 𝑟𝑖𝐻, (5.4)

and 𝑅+ ℓ𝑖𝑟𝑖 is a residual form w.r.t. 𝐾, where ℓ𝑖 is an indeterminate.

4.4 Update 𝑅 to 𝑅+ ℓ𝑖𝑟𝑖.
Find ℓ𝑗 ∈ F such that 𝑅 = 0 by solving a linear system in ℓ0, . . . , ℓ𝑖

over F. If there is a nontrivial solution, return⎛⎝ 𝑖∑︁
𝑗=0

ℓ𝑗𝑆
𝑗
𝑛,

𝑖∑︁
𝑗=0

ℓ𝑗𝑔𝑗𝐻

⎞⎠ .
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Theorem 5.7. Let 𝑇 be a hypergeometric term over F(𝑘). If 𝑇 has a telescoper,
then Algorithm 5.6 terminates and returns a telescoper of minimal order for 𝑇
w.r.t. 𝑘.

Proof. By Theorem 3.18, 𝑟0 = 0 in step 2 implies that 𝑇 is summable, and thus 1
is a minimal telescoper for 𝑇 w.r.t. 𝑘. Now let 𝑟0 obtained from step 2 be of
the form 𝑟0 = 𝑎0/𝑏0 + 𝑞0/𝑣, where 𝑎0, 𝑏0, 𝑣 ∈ F[𝑘], deg𝑘(𝑎0) < deg𝑘(𝑏0), 𝑏0 is
strongly coprime with 𝐾, 𝑞0 ∈ W𝐾 , and 𝑣 is the denominator of 𝐾. According
to [8, Theorem 8], 𝐾 is integer-linear and so is 𝑣. It follows that 𝑏0 is integer-
linear if and only if 𝑏0𝑣 is. By Theorem 5.5, 𝑇 has a telescoper if and only if the
denominator of 𝑟0 is integer-linear. Thus, steps 2 and 3 are correct.

It follows from (5.2) and 𝜎𝑛(𝑟0𝐻) = 𝜎𝑛(𝑟0)𝑁𝐻 that (5.3) holds for 𝑖 = 1. By
Algorithm 4.20, there exists a rational function 𝑢1 ∈ F(𝑘) and a residual form 𝑟1
w.r.t. 𝐾 such that

𝑟1 = 𝐾𝜎𝑘(𝑢1) − 𝑢1 + 𝑟1, i.e., 𝑟1 ≡𝑘 𝑟1 mod V𝐾 ,

and 𝑅 + ℓ1𝑟1 is again a residual form for all ℓ0, ℓ1 ∈ F. Setting 𝑔1 = 𝑔1 + 𝑢1, we
see that (5.4) holds for 𝑖 = 1. By a direct induction on 𝑖, (5.4) holds in the loop
of step 4.

Assume that 𝐿 =
∑︀𝜌

𝑖=0 𝑐𝑖𝑆
𝑖
𝑛 is a minimal telescoper for 𝑇 with 𝜌 ∈ N, 𝑐𝑖 ∈ F

and 𝑐𝜌 ̸= 0. Then 𝐿(𝑇 ) is summable w.r.t. 𝑘. By Theorem 3.18,
∑︀𝜌

𝑖=0 𝑐𝑖𝑟𝑖 is
equal to zero. Thus, the linear homogeneous system (over F) obtained by equating∑︀𝜌

𝑖=0 ℓ𝑖𝑟𝑖 to zero has a nontrivial solution, which yields a minimal telescoper.

Remark 5.8. Algorithm 5.6 indeed separates the computation of minimal tele-
scopers from that of certificates. In applications where certificates are irrelevant,
we can drop step 4.2, and in step 4.3 we compute 𝑔𝑖 and 𝑟𝑖 with

𝑟𝑖 ≡𝑘 𝑟𝑖 mod V𝐾 , 𝜎𝑖
𝑛(𝑟𝑖−1)𝑁𝐻 = Δ𝑘(𝑔𝑖𝐻) + 𝑟𝑖𝐻

and 𝑅+ℓ𝑖𝑟𝑖 is a residual form w.r.t.𝐾, where ℓ𝑖 is an indeterminate. Moreover, the
rational function 𝑔𝑖 can be discarded, and we do not need to calculate

∑︀𝑖
𝑗=0 ℓ𝑗𝑔𝑗𝐻

in the end.

Remark 5.9. Instead of applying the modified reduction to 𝜎𝑛(𝑟𝑖−1)𝑁𝐻 in
step 4.1, it is also possible to apply the reduction to 𝜎𝑖

𝑛(𝑇 ) directly, but our
experiments suggest that this variant takes considerably more time. This obser-
vation agrees with the advices given in [6, Example 6].

Since Algorithm 5.6 performs the same function as Zeilberger’s algorithm, it is
also applicable to the examples and applications indicated in [54]. In other words,
it can be used to evaluate definite sums and prove identities of hypergeometric
terms efficiently.
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Example 5.10. Consider the hypergeometric term 𝑇 =
(︂
𝑛

𝑘

)︂3
. Then the respec-

tive shift-quotients of 𝑇 with respect to 𝑛 and 𝑘 are

𝑓 = 𝜎𝑛(𝑇 )
𝑇

= (𝑛+ 1)3

(𝑛+ 1 − 𝑘)3 and 𝑔 = 𝜎𝑘(𝑇 )
𝑇

= (𝑛− 𝑘)3

(𝑘 + 1)3 .

Since 𝑔 is shift-reduced w.r.t. 𝑘, its kernel is equal to 𝑔 itself, and the corre-
sponding shell is 1, implying that 𝐻 = 𝑇 in step 1 of Algorithm 5.6. In step 4,
applying the modified Abramov-Petkovšek reduction to 𝑇, 𝜎𝑛(𝑇 ), 𝜎2

𝑛(𝑇 ), incre-
mentally, yields

𝜎𝑖
𝑘(𝑇 ) = Δ𝑘(𝑔𝑖𝐻) + 𝑞𝑖

𝑣
𝐻,

where 𝑖 = 0, 1, 2, 𝑣 = (𝑘 + 1)3,

𝑞0 = 1
2(𝑛+ 1)(𝑛2 − 𝑛+ 3𝑘(𝑘 − 𝑛+ 1) + 1), 𝑞1 = (𝑛+ 1)3,

𝑞2 = (𝑛+ 1)3

(𝑛+ 2)2

(︁
11𝑛2 − 12𝑛𝑘 + 17𝑛+ 20 + 12𝑘 + 12𝑘2

)︁
,

and 𝑔0, 𝑔1, 𝑔2 ∈ F(𝑘) which are too complicated to be reproduced here. By finding
an F-linear dependency among 𝑞0, 𝑞1, 𝑞2, we see that

𝐿 = (𝑛+ 2)2𝑆2
𝑛 − (7𝑛2 + 21𝑛+ 16)𝑆𝑛 − 8(𝑛+ 1)2

is a minimal telescoper for 𝑇 w.r.t. 𝑘. For a corresponding certificate 𝐺, one can
choose to leave it as an unnormalized term

𝐺 = (𝑛+ 2)2𝑔2 − (7𝑛2 + 21𝑛+ 16)𝑔1 − 8(𝑛+ 1)2𝑔0,

or normalize it as one rational function according to the specific requirements.

5.3 Implementation and timings

We have implemented Algorithm 5.6 in Maple 18. The procedure is named as
ReductionCT in the Maple package ShiftReductionCT. See Appendix A for
more details.

In this section, we compare the runtime of the new procedure to the perfor-
mance of Zeilberger’s algorithm. All timings are measured in seconds on a Linux
computer with 388Gb RAM and twelve 2.80GHz Dual core processors. No par-
allelism was used in this experiment. In addition, we also compare the memory
requirements of all procedures, which is shown in Appendix B. For brevity, we
denote
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• Z: the procedure SumTools[Hypergeometric][Zeilberger], which is based
on Zeilberger’s algorithm;

• RCT𝑡𝑐: the procedure ReductionCT in ShiftReductionCT, which com-
putes a minimal telescoper and a corresponding normalized certificate;

• RCT𝑡: the procedure ReductionCT in ShiftReductionCT, which computes
a minimal telescoper without constructing a certificate.

• order: the order of the resulting minimal telescoper.
Example 5.11. Consider bivariate hypergeometric terms of the form

𝑇 = 𝑓(𝑛, 𝑘)
𝑔1(𝑛+ 𝑘)𝑔2(2𝑛+ 𝑘)

Γ(2𝛼𝑛+ 𝑘)
Γ(𝑛+ 𝛼𝑘)

where 𝑓 ∈ Z[𝑛, 𝑘] of degree 𝑑2, and for 𝑖 = 1, 2, 𝑔𝑖 = 𝑝𝑖𝜎
𝜆
𝑧 (𝑝𝑖)𝜎𝜇

𝑧 (𝑝𝑖) with 𝑝𝑖 ∈ Z[𝑧]
of degree 𝑑1 and 𝛼, 𝜆, 𝜇 ∈ N. For different choices of 𝑑1, 𝑑2, 𝛼, 𝜇, 𝜆, Table 5.1
compares the timings of the four procedures.

(𝑑1, 𝑑2, 𝛼, 𝜆, 𝜇) Z RCT𝑡𝑐 RCT𝑡 order
(1, 0, 1, 5, 5) 17.12 5.00 1.80 4
(1, 0, 2, 5, 5) 74.91 26.18 5.87 6
(1, 0, 3, 5, 5) 445.41 92.74 17.34 7
(1, 8, 3, 5, 5) 649.57 120.88 23.59 7
(2, 0, 1, 5, 10) 354.46 58.01 4.93 4
(2, 0, 2, 5, 10) 576.31 363.25 53.15 6
(2, 0, 3, 5, 10) 2989.18 1076.50 197.75 7
(2, 3, 3, 5, 10) 3074.08 1119.26 223.41 7
(2, 0, 1, 10, 15) 2148.10 245.07 11.22 4
(2, 0, 2, 10, 15) 2036.96 1153.38 153.21 6
(2, 0, 3, 10, 15) 11240.90 3932.26 881.12 7
(2, 5, 3, 10, 15) 10163.30 3954.47 990.60 7
(3, 0, 1, 5, 10) 18946.80 407.06 43.01 6
(3, 0, 2, 5, 10) 46681.30 2040.21 465.88 8
(3, 0, 3, 5, 10) 172939.00 5970.10 1949.71 9

Table 5.1: Timing comparison of Zeilberger’s algorithm to reduction-based cre-
ative telescoping with and without construction of a certificate (in seconds)

Remark 5.12. The difference between RCT𝑡𝑐 and RCT𝑡 mainly comes from the
time needed to bring the rational function 𝑔 in the certificate 𝑔𝐻 on a common
denominator. When it is acceptable to keep the certificate as an unnormalized
linear combination of rational functions, their timings are virtually the same.



Chapter 6

Order Bounds for
Minimal Telescopers 1

In the previous chapter, we have presented a reduction-based creative telescoping
algorithm for bivariate hypergeometric terms, namely Algorithm 5.6. Roughly
speaking, its basic idea is as follows. Using the modified Abramov-Petkovšek
reduction from Chapter 3, we first reduce a given hypergeometric term and its
shifts to some required “standard forms” (called remainders in the sequel), such
that the difference between the original function and its remainder is summable.
Then computing a telescoper amounts to finding a linear dependence among
these remainders. In order to show that this algorithm terminates, we show that
for every summable term, its remainder is zero. This ensures that the algorithm
terminates by the existence criterion given in Theorem 5.5, and in fact it will
find the smallest possible telescoper, but it does not provide a bound on its
order. Another possible approach is to show that the vector space spanned by the
remainders has a finite dimension. Then, as soon as the number of remainders
exceeds this dimension, we can be sure that a telescoper will be found. This
approach was taken in [15, 16, 23]. As a nice side result, this approach provides
an independent proof of the existence of telescopers, and even a bound on the
order of minimal telescopers.

In this chapter, we show that the approach for the differential case also
works for the shift case, i.e., the remainders in the shift case also form a finite-
dimensional vector space, so as to eliminate the discrepancy. As a result, we
obtain a new argument for the termination of Algorithm 5.6, and also get new
bounds for the order of minimal telescopers for hypergeometric terms. We do not
find exactly the same bounds that are already in the literature [49, 6]. Comparing
our bounds to the known bounds in the literature, it appears that for “generic”
input (see Subsection 6.4.1 for a definition), the values often agree (of course, be-
cause the known bounds are already generically sharp). However, there are some

1The main results in this chapter are published in [38].
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special examples in which our bounds are better than the known bounds. On
the other hand, our bounds are never worse than the known ones. In addition,
we give a variant of Algorithm 5.6 based on the new bounds. An experimental
comparison is presented in the final section.

6.1 Shift-homogeneous decompositions

In this section, we generalize the notion of shift-equivalence in Chapter 4 to
the bivariate case, and then derive a useful decomposition for an integer-linear
polynomial.

Using the same notations as the previous chapter, K is a field of characteristic
zero, and K(𝑛, 𝑘) is the field of rational functions in 𝑛 and 𝑘 over K. Let 𝜎𝑛 and 𝜎𝑘

be the shift operators w.r.t. 𝑛 and 𝑘, respectively.

Definition 6.1. Two polynomials 𝑝, 𝑞 ∈ K[𝑛, 𝑘] are called shift-equivalent w.r.t. 𝑛
and 𝑘 if there exist integers ℓ,𝑚 such that 𝑞 = 𝜎ℓ

𝑛𝜎
𝑚
𝑘 (𝑝). We denote it by 𝑝 ∼𝑛,𝑘 𝑞.

Clearly ∼𝑛,𝑘 is an equivalence relation. In particular, when ℓ = 0 or 𝑚 = 0,
the above definition degenerates to Definition 4.1. Thus ∼𝑛 or ∼𝑘 implies ∼𝑛,𝑘.
Choosing the pure lexicographic order 𝑛 ≺ 𝑘, we say a polynomial is monic if its
highest term has coefficient 1. A rational function is said to be shift-homogeneous
if all non-constant monic irreducible factors of its denominator and numerator
belong to the same shift-equivalence class.

By grouping together the factors in the same shift-equivalence class, every
rational function 𝑟 ∈ K(𝑛, 𝑘) can be decomposed into the form

𝑟 = 𝑐 𝑟1 . . . 𝑟𝑠, (6.1)

where 𝑐 ∈ K, 𝑠 ∈ N, each 𝑟𝑖 is a shift-homogeneous rational function, and any two
non-constant monic irreducible factors of 𝑟𝑖 and 𝑟𝑗 are pairwise shift-inequivalent
whenever 𝑖 ̸= 𝑗. We call each 𝑟𝑖 a shift-homogeneous component of 𝑟 and (6.1) a
shift-homogeneous decomposition of 𝑟. Noticing that the field K(𝑛, 𝑘) is a unique
factorization domain, one can easily show that the shift-homogeneous decom-
position is unique up to the order of the factors and multiplication by nonzero
constants.

Let 𝑝 ∈ K[𝑛, 𝑘] be an irreducible integer-linear polynomial. Then it is of the
form 𝑝 = 𝑃 (𝜆𝑛 + 𝜇𝑘) for some 𝑃 ∈ K[𝑧] and 𝜆, 𝜇 ∈ Z, not both zero. W.l.o.g.,
we further assume that 𝜇 ≥ 0 and gcd(𝜆, 𝜇) = 1. Under this assumption, making
ansatz and comparing coefficients yield the uniqueness of 𝑃 since Z is a unique
factorization domain. In view of this, we call the pair (𝑃, {𝜆, 𝜇}) the univariate
representation of the integer-linear polynomial 𝑝. By Bézout’s relation, there exist
unique integers 𝛼, 𝛽 with |𝛼| < |𝜇| and |𝛽| < |𝜆| such that 𝛼𝜆 + 𝛽𝜇 = 1. Define
𝛿(𝜆,𝜇) to be 𝜎𝛼

𝑛𝜎
𝛽
𝑘 . For brevity, we just write 𝛿 if (𝜆, 𝜇) is clear from the context.
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Note that 𝛿(𝑃 (𝑧)) = 𝑃 (𝑧+ 1) with 𝑧 = 𝜆𝑛+𝜇𝑘, which allows us to treat integer-
linear polynomials as univariate ones. For a Laurent polynomial 𝜉 =

∑︀𝜌
𝑖=ℓ𝑚𝑖𝛿

𝑖

in Z[𝛿, 𝛿−1] with ℓ, 𝜌,𝑚𝑖 ∈ Z and ℓ ≤ 𝜌, define

𝑝𝜉 = 𝛿ℓ(𝑝𝑚ℓ)𝛿ℓ+1(𝑝𝑚ℓ+1) · · · 𝛿𝜌(𝑝𝑚𝜌).

Let 𝑝, 𝑞 ∈ K[𝑛, 𝑘] be two irreducible integer-linear polynomials of the forms

𝑝 = 𝑃 (𝜆1𝑛+ 𝜇1𝑘) and 𝑞 = 𝑄(𝜆2𝑛+ 𝜇2𝑘),

where (𝑃, {𝜆1, 𝜇1}) and (𝑄, {𝜆2, 𝜇2}) are the univariate representations of 𝑝 and 𝑞,
respectively. Namely, 𝑃,𝑄 ∈ K[𝑧], 𝜆1, 𝜇1, 𝜆2, 𝜇2 ∈ Z, 𝜇1, 𝜇2 ≥ 0 and gcd(𝜆1, 𝜇1) =
gcd(𝜆2, 𝜇2) = 1. It is readily seen that 𝑝 ∼𝑛,𝑘 𝑞 if and only if 𝜆1 = 𝜆2, 𝜇1 = 𝜇2

and 𝑞 = 𝑝𝛿
ℓ

for some integer ℓ, in which 𝛿 = 𝛿(𝜆1,𝜇1) = 𝛿(𝜆2,𝜇2).
Given a shift-homogeneous and integer-linear rational function 𝑟 ∈ K(𝑛, 𝑘),

let ℎ be a monic, irreducible and integer-linear polynomial in K[𝑛, 𝑘] with the
property that all monic irreducible factors of the numerator and denominator
of 𝑟 are equal to some shift of ℎ w.r.t. 𝑛 and 𝑘. Assume that the univariate
representation of ℎ is the pair (𝑃ℎ, {𝜆ℎ, 𝜇ℎ}). Then 𝑟 can be written as 𝑐 ℎ𝜉ℎ

for some 𝑐 ∈ K and 𝜉ℎ ∈ Z[𝛿−1, 𝛿] with 𝛿 = 𝛿(𝜆ℎ,𝜇ℎ). We call (𝑃ℎ, {𝜆ℎ, 𝜇ℎ}, 𝜉ℎ)
a univariate representation of 𝑟. Assume that (𝑃𝑔, {𝜆𝑔, 𝜇𝑔}, 𝜉𝑔) is another uni-
variate representation of 𝑟 with 𝑔 ∈ K[𝑛, 𝑘]. By the conclusion made in the
preceding paragraph, we find that 𝑔 = ℎ𝛿

ℓ

for some ℓ ∈ Z, or, equivalently,
𝑃𝑔(𝑧) = 𝑃ℎ(𝑧 + ℓ). Moreover, (𝜆𝑔, 𝜇𝑔) = (𝜆ℎ, 𝜇ℎ). It follows that 𝜉𝑔 = 𝛿ℓ𝜉ℎ. In
particular, deg𝑧(𝑃ℎ) is equal to deg𝑧(𝑃𝑔) and the nonzero coefficients of 𝜉ℎ are
exactly the same as those of 𝜉𝑔. When the choice of ℎ and 𝑔 is insignificant, we
say that a tuple (𝑃, {𝜆, 𝜇}, 𝜉) is a univariate representation of 𝑟 if the polynomial
𝑃 ∈ K[𝑧] is irreducible and 𝑟(𝑛, 𝑘) = 𝑐𝑃 (𝜆𝑛+𝜇𝑘)𝜉 for some 𝑐 ∈ K. Note that the
coefficients of 𝜉 are all nonnegative if 𝑟 is a polynomial.

Let 𝑟 ∈ K(𝑛, 𝑘) be integer-linear with the shift-homogeneous decomposition

𝑟 = 𝑐 𝑟1 · · · 𝑟𝑠.

For 𝑖 = 1, . . . , 𝑠, assume that 𝑈𝑖 = (𝑃𝑖, (𝜆𝑖, 𝜇𝑖), 𝜉𝑖) is a univariate representation
of 𝑟𝑖. Then we call the tuple

(𝑐, (𝑈1, . . . , 𝑈𝑠))

a univariate representation of 𝑟.
To avoid unnecessary duplication, we make a notational convention.

Convention 6.2. Let 𝑇 be a hypergeometric term over K(𝑛, 𝑘) with a multiplica-
tive decomposition 𝑆𝐻, where 𝑆 ∈ K(𝑛, 𝑘) and 𝐻 is a hypergeometric term whose
shift-quotient 𝐾 w.r.t. 𝑘 is shift-reduced w.r.t. 𝑘. By [8, Theorem 8], we know 𝐾
is integer-linear over K. Write 𝐾 = 𝑢/𝑣 where 𝑢, 𝑣 ∈ K(𝑛)[𝑘] and gcd(𝑢, 𝑣) = 1.
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6.2 Shift-relation of residual forms

In this section, we describe a relation among residual forms of a given hypergeo-
metric term and its shifts. This relation enables us to derive a shift-free common
multiple of significant denominators of those residual forms, provided that tele-
scopers exist. The existence of this common multiple implies that the residual
forms span a finite-dimensional vector space over K(𝑛), and then lead to order
bounds for the minimal telescopers presented in the next section.

Lemma 6.3. With Convention 6.2, let 𝑟 be a residual form of 𝑆 w.r.t. 𝐾.
Then 𝜎𝑛(𝐾) and 𝜎𝑛(𝑆) are a kernel and a corresponding shell of 𝜎𝑛(𝑇 ) w.r.t. 𝑘,
respectively. Moreover, 𝜎𝑛(𝑟) is a residual form of 𝜎𝑛(𝑆) w.r.t. 𝜎𝑛(𝐾).

Proof. By Convention 6.2, 𝜎𝑛(𝑇 ) = 𝜎𝑛(𝑆)𝜎𝑛(𝐻) and 𝜎𝑛(𝐾) is the shift-quotient
of 𝜎𝑛(𝐻) w.r.t. 𝑘. To prove the first assertion, one needs to show that 𝜎𝑛(𝐾)
is shift-reduced w.r.t. 𝑘. This can be proven by observing that, for any two
polynomials 𝑝1, 𝑝2 ∈ K(𝑛)[𝑘], we have gcd(𝜎𝑛(𝑝1), 𝜎𝑛(𝑝2)) = 1 if and only if
gcd(𝑝1, 𝑝2) = 1.

For the second assertion, since 𝑟 is a residual form w.r.t. 𝐾, we write

𝑟 = 𝑎

𝑏
+ 𝑞

𝑣
,

where 𝑎, 𝑏, 𝑞 ∈ K(𝑛)[𝑘], deg𝑘(𝑎) < deg𝑘(𝑏), gcd(𝑎, 𝑏) = 1, 𝑏 is shift-free and
strongly coprime with 𝐾, and 𝑞 ∈ W𝐾 . It is clear that deg𝑘(𝜎𝑛(𝑎)) < deg𝑘(𝜎𝑛(𝑏))
and gcd(𝜎𝑛(𝑎), 𝜎𝑛(𝑏)) = 1. By the above observation, 𝜎𝑛(𝑏) is shift-free and
strongly coprime with 𝜎𝑛(𝐾).

Note that 𝜎𝑛 ∘ deg𝑘 = deg𝑘 ∘𝜎𝑛 and 𝜎𝑛 ∘ lc𝑘 = lc𝑘 ∘𝜎𝑛, where lc𝑘(𝑝) is the
leading coefficient of 𝑝 ∈ K(𝑛)[𝑘] w.r.t. 𝑘. So the standard complements W𝐾

and W𝜎𝑛(𝐾) for polynomial reduction have the same echelon basis according to
the case study in Subsection 3.2.1. It follows from 𝑞 ∈ W𝐾 that 𝜎𝑛(𝑞) ∈ W𝜎𝑛(𝐾).
Accordingly, 𝜎𝑛(𝑟) is a residual form of 𝜎𝑛(𝑆) w.r.t. 𝜎𝑛(𝐾).

Theorem 6.4. With Convention 6.2, for every nonnegative integer 𝑖 assume

𝜎𝑖
𝑛(𝑇 ) = Δ𝑘(𝑔𝑖𝐻) +

(︂
𝑎𝑖

𝑏𝑖
+ 𝑞𝑖

𝑣

)︂
𝐻, (6.2)

where 𝑔𝑖 ∈ K(𝑛, 𝑘), 𝑎𝑖, 𝑏𝑖 ∈ K(𝑛)[𝑘] with deg𝑘(𝑎𝑖) < deg𝑘(𝑏𝑖), gcd(𝑎𝑖, 𝑏𝑖) = 1, 𝑏𝑖

is shift-free w.r.t. 𝑘 and strongly coprime with 𝐾, and 𝑞𝑖 belongs to W𝐾 . Then 𝑏𝑖

is shift-related to 𝜎𝑖
𝑛(𝑏0), i.e., 𝑏𝑖 ≈𝑘 𝜎

𝑖
𝑛(𝑏0).

Proof. We proceed by induction on 𝑖. For 𝑖 = 0, the reflexivity of the relation ≈𝑘

implies that 𝑏0 ≈𝑘 𝑏0.
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Assume that 𝑏𝑖−1 ≈𝑘 𝜎
𝑖−1
𝑛 (𝑏0) for 𝑖 ≥ 1. Note that 𝐾 is also a kernel of 𝜎𝑖−1

𝑛 (𝑇 )
and 𝜎𝑖

𝑛(𝑇 ) w.r.t. 𝑘. Let 𝑆𝑖−1 and 𝑆𝑖 be the corresponding shells, respectively.
Consider the equality

𝜎𝑖−1
𝑛 (𝑇 ) = Δ𝑘(𝑔𝑖−1𝐻) +

(︂
𝑎𝑖−1
𝑏𝑖−1

+ 𝑞𝑖−1
𝑣

)︂
𝐻,

where 𝑔𝑖−1 ∈ K(𝑛, 𝑘) and 𝑎𝑖−1/𝑏𝑖−1 + 𝑞𝑖−1/𝑣 is a residual form of 𝑆𝑖−1 w.r.t. 𝐾.
Applying 𝜎𝑛 to both sides yields

𝜎𝑖
𝑛(𝑇 ) = 𝜎𝑛(Δ𝑘(𝑔𝑖−1𝐻)) + 𝜎𝑛

(︂
𝑎𝑖−1
𝑏𝑖−1

+ 𝑞𝑖−1
𝑣

)︂
𝜎𝑛(𝐻)

= Δ𝑘(𝜎𝑛(𝑔𝑖−1𝐻)) +
(︂
𝜎𝑛(𝑎𝑖−1)
𝜎𝑛(𝑏𝑖−1) + 𝜎𝑛(𝑞𝑖−1)

𝜎𝑛(𝑣)

)︂
𝜎𝑛(𝐻)

It follows from Lemma 6.3 that 𝜎𝑛(𝐾) and 𝜎𝑛(𝑆𝑖−1) are a kernel and the corre-
sponding shell 𝜎𝑖

𝑛(𝑇 ) w.r.t. 𝑘, and 𝜎𝑛(𝑎𝑖−1)/𝜎𝑛(𝑏𝑖−1)+𝜎𝑛(𝑞𝑖−1)/𝜎𝑛(𝑣) is a residual
form of 𝑆𝑖 w.r.t. 𝜎𝑛(𝐾). By (6.2) with 𝑖 = 1, we know that 𝑎𝑖/𝑏𝑖 + 𝑞𝑖/𝑣 is a resid-
ual form of 𝑆𝑖 w.r.t. 𝐾. By Theorem 4.10, 𝑏𝑖 ≈𝑘 𝜎𝑛(𝑏𝑖−1). Thus 𝑏𝑖 ≈𝑘 𝜎

𝑖
𝑛(𝑏0) by

the induction hypothesis.

Using the relation revealed in the above theorem, we can derive a common
multiple as promised at the beginning of this section. To this end, we need two
simple lemmas.

The first lemma says that, with Convention 6.2, for any 𝑓 ∈ K(𝑛)[𝑘], there
always exists 𝑔 ∈ K(𝑛)[𝑘] such that 𝑓 ≈𝑘 𝑔 and 𝑔 is strongly coprime with 𝐾.

Lemma 6.5. With Convention 6.2, assume that 𝑝 is an irreducible polynomial
in K(𝑛)[𝑘]. Then there exists an integer 𝑚 such that 𝜎𝑚

𝑘 (𝑝) is strongly coprime
with 𝐾.

Proof. According to the definition of strong coprimeness, there is one and only
one of the following three cases true.
Case 1. 𝑝 is strongly coprime with 𝐾. Then the lemma follows by letting 𝑚 = 0.
Case 2. There exists an integer 𝑘 ≥ 0 such that 𝜎𝑘

𝑘(𝑝) | 𝑢. Then for every integer ℓ,
we have gcd(𝜎ℓ

𝑘(𝑝), 𝑣) = 1, since 𝐾 is shift-reduced w.r.t. 𝑘. Let

𝑚 = max{𝑖 ∈ N | 𝜎𝑖
𝑘(𝑝) | 𝑢} + 1.

One can see that 𝜎𝑚
𝑘 (𝑝) is strongly coprime with 𝐾.

Case 3. There exists an integer 𝑘 ≤ 0 such that 𝜎𝑘
𝑘(𝑝) | 𝑣. Then for every integer ℓ,

we have gcd(𝜎ℓ
𝑘(𝑝), 𝑢) = 1, since 𝐾 is shift-reduced w.r.t. 𝑘. Letting

𝑚 = min{𝑖 ∈ N | 𝜎𝑖
𝑘(𝑝) | 𝑣} − 1

yields that 𝜎𝑚
𝑘 (𝑝) is strongly coprime with 𝐾.
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The next lemma shows that for any integer-linear polynomial in K[𝑛, 𝑘], the
number of shift-equivalence classes w.r.t. 𝑘 produced by shifting the polynomial
as a univariate one is finite.

Lemma 6.6. Let 𝑞 ∈ K[𝑛, 𝑘] be integer-linear, and then 𝑞 = 𝑃 (𝜆𝑛 + 𝜇𝑘) for
𝑃 ∈ K[𝑧] and 𝜆, 𝜇 ∈ Z not both zero. Then any shift of 𝑞 w.r.t. 𝑛 or 𝑧 = 𝜆𝑛+𝜇𝑘

is shift-equivalent to 𝛿𝑗(𝑞) w.r.t. 𝑘 for 𝛿 = 𝛿(𝜆,𝜇) and 0 ≤ 𝑗 ≤ 𝜇−1. More precisely,
let

𝑆 = {𝛿𝑗(𝑞) | 𝑗 = 0, . . . , 𝜇− 1}, 𝑆1 = {𝜎𝑖
𝑛(𝑞) | 𝑖 ∈ N} and 𝑆2 = {𝛿𝑗(𝑞) | 𝑗 ∈ N}.

Then for any element 𝑓 in 𝑆1 ∪ 𝑆2, there exists 𝑔 ∈ 𝑆 such that 𝑓 ∼𝑘 𝑔.

Proof. Assume that 𝑓 ∈ 𝑆1 ∪ 𝑆2. Since 𝜎𝑛 = 𝛿𝜆, there exists a nonnegative
integer 𝑖 such that

𝑓 = 𝛿𝑖(𝑞) = 𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑖).

By Euclidean division, there exist unique integers 𝑗, ℓ with 0 ≤ 𝑗 ≤ 𝜇 − 1, such
that 𝑖 = ℓ𝜇+ 𝑗. It follows that

𝑓 = 𝜎ℓ
𝑘(𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑗)) = 𝜎ℓ

𝑘(𝛿𝑗(𝑞)).

Letting 𝑔 = 𝛿𝑗(𝑞) completes the proof.

Now we are ready to compute a common multiple as mentioned before.

Theorem 6.7. With Convention 6.2, assume that

𝑇 = Δ𝑘(𝑔𝐻) +
(︁𝑎
𝑏

+ 𝑞

𝑣

)︁
𝐻, (6.3)

where 𝑔 ∈ K(𝑛, 𝑘), 𝑎, 𝑏, 𝑞 ∈ K(𝑛)[𝑘], deg𝑘(𝑎) < deg𝑘(𝑏), gcd(𝑎, 𝑏) = 1, 𝑏 is shift-
free w.r.t. 𝑘 and strongly coprime with 𝐾, and 𝑞 ∈ W𝐾 . Further assume that 𝑏 is
integer-linear and has a univariate representation

(𝑐, (𝑈1, . . . , 𝑈𝑠)), where 𝑈𝑗 = (𝑃𝑗 , (𝜆𝑗 , 𝜇𝑗), 𝜉𝑗), 𝑗 = 1, . . . , 𝑠.

Then there exists 𝐵 ∈ K(𝑛)[𝑘] such that 𝑏 | 𝐵 and for all 𝑖 ∈ N,

𝜎𝑖
𝑛(𝑇 ) = Δ𝑘(𝑔𝑖𝐻) +

(︁𝑎𝑖

𝐵
+ 𝑞𝑖

𝑣

)︁
𝐻 (6.4)

for some 𝑔𝑖 ∈ K(𝑛, 𝑘), 𝑎𝑖 ∈ K(𝑛)[𝑘] with deg𝑘(𝑎𝑖) < deg𝑘(𝐵), and 𝑞𝑖 ∈ W𝐾 .
Moreover,

(i) 𝐵 is shift-free w.r.t. 𝑘 and strongly coprime with 𝐾;
(ii) deg𝑘(𝐵) =

∑︀𝑠
𝑗=1 𝜇𝑗𝑚𝑗 deg𝑘(𝑃𝑗), where 𝑚𝑗 is the maximum of the coeffi-

cients of 𝜉𝑗.
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Proof. Since the shift-homogeneous components of 𝑏 are coprime to each other, it
suffices to consider the case when 𝑏 is shift-homogeneous. W.l.o.g., assume that 𝑏
is shift-homogeneous and has a univariate representation (𝑃, {𝜆, 𝜇}, 𝜉) such that

𝑏 = 𝑃 (𝜆𝑛+ 𝜇𝑘)𝜉.

Write 𝜉 =
∑︀𝑑

𝑖=0𝑚
′
𝑖𝛿

𝑖 where 𝑑 ∈ N, 𝑚′
𝑖 ∈ Z and 𝛿 = 𝛿(𝜆,𝜇).

If 𝜇 = 0 then 𝑏 ∈ K(𝑛). By the modified Abramov-Petkovšek reduction we
can assume that (6.2) holds for every 𝑖 > 0 and thus 𝑏𝑖 ∈ K(𝑛) by Theorem 6.4.
The assertion follows by letting 𝐵 = 1.

Otherwise we have 𝜇 > 0. By Lemma 6.6, for every 𝑖 ∈ N there are unique
integers 𝑗 and ℓ𝑗 with 0 ≤ 𝑗 ≤ 𝜇− 1 such that

𝑃 (𝜆𝑛+ 𝜇𝑘)𝛿
𝑖

= 𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑗)𝜎
ℓ𝑗
𝑘 ,

which is equivalent to

𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑖) = 𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝜇ℓ𝑗 + 𝑗).

Since 𝑃 is irreducible, we have 𝑖 = 𝜇ℓ𝑗 + 𝑗. Let 𝑚′′
𝑗 = 𝑚′

𝜇ℓ𝑗+𝑗 . Since 𝑏 is shift-free
w.r.t. 𝑘,

𝑏 =
𝜇−1∏︁
𝑗=0

𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑗)𝑚
′′
𝑗 𝜎

ℓ𝑗
𝑘 .

For each 𝑗, if 𝑚′′
𝑗 ̸= 0 then set 𝑚𝑗 = ℓ𝑗 ; otherwise by Lemma 6.5, let 𝑚𝑗 be

an integer so that 𝑃 (𝜆𝑛 + 𝜇𝑘 + 𝑗)𝜎
𝑚𝑗
𝑘 is strongly coprime with 𝐾. Let 𝑚 =

max0≤𝑗≤𝜇−1{𝑚′′
𝑗 } and

𝐵 =
𝜇−1∏︁
𝑗=0

𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑗)𝑚 𝜎
𝑚𝑗
𝑘 . (6.5)

Then deg𝑘(𝐵) = 𝜇𝑚 deg𝑘(𝑃 ). Since 𝑚𝑗 = ℓ𝑗 when 𝑚′′
𝑗 ̸= 0, every irreducible

factor of 𝑏 divides 𝐵 and thus 𝑏 | 𝐵 by the maximum of 𝑚. Because 0 ≤ 𝑗 ≤ 𝜇−1,
so 𝐵 is shift-free w.r.t. 𝑘. Moreover, 𝐵 is strongly coprime with 𝐾 by the choice
of 𝑚𝑗 .

It remains to show that (6.4) holds for every nonnegative integer 𝑖. To prove
this, we first show 𝜎𝑛(𝐵) ≈𝑘 𝐵. By (6.5), we have

𝐵 ≈𝑘

𝜇−1∏︁
𝑗=0

𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑗)𝑚,

which yields

𝜎𝑛(𝐵) ≈𝑘

𝜇−1∏︁
𝑗=0

𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑗 + 𝜆)𝑚.



56 Chapter 6. Order Bounds for Minimal Telescopers

By Lemma 6.6, there exists a unique integer ℓ with 0 ≤ ℓ ≤ 𝜇− 1 such that

𝑃 (𝜆𝑛+ 𝜇𝑘 + 𝑗 + 𝜆) ∼𝑘 𝑃 (𝜆𝑛+ 𝜇𝑘 + ℓ).

Conversely, for any 0 ≤ ℓ ≤ 𝜇 − 1, there exists a unique integer 0 ≤ 𝑗 ≤ 𝜇 − 1
such that the above equivalence holds. Thus

𝜎𝑛(𝐵) ≈𝑘

𝜇−1∏︁
ℓ=0

𝑃 (𝜆𝑛+ 𝜇𝑘 + ℓ)𝑚 ≈𝑘 𝐵.

For 𝑖 = 0, letting 𝑔0 = 𝑔, 𝑎0 = 𝑎𝐵/𝑏 and 𝑞0 = 𝑞 gives (6.4). Since 𝜎𝑛(𝐵) ≈𝑘 𝐵,
we have 𝜎𝑖

𝑛(𝐵) ≈𝑘 𝜎
𝑖−1
𝑛 (𝐵) for every positive integer 𝑖, and then 𝜎𝑖

𝑛(𝐵) ≈𝑘 𝐵.
On the other hand, by the modified Abramov-Petkovšek reduction (6.2) holds

for every 𝑖 ≥ 0, in which 𝑏0 = 𝑏. According to Theorem 6.4, 𝑏𝑖 ≈𝑘 𝜎
𝑖
𝑛(𝑏0). It follows

from 𝑏 | 𝐵 that 𝜎𝑖
𝑛(𝑏) | 𝜎𝑖

𝑛(𝐵). Consequently, we have

𝑏𝑖 ≈𝑘 𝜎
𝑖
𝑛(𝑏) | 𝜎𝑖

𝑛(𝐵) ≈𝑘 𝐵.

Thus there is �̃�𝑖 ∈ K(𝑛)[𝑘] dividing 𝐵 so that �̃�𝑖 ≈𝑘 𝑏𝑖. Moreover, �̃�𝑖 is strongly
coprime with 𝐾 as 𝐵 is. By the shifting property of significant denominators (i.e.,
Lemma 4.17 and Remark 4.18), there exist 𝑔𝑖 ∈ K(𝑛, 𝑘), �̃�𝑖, 𝑞𝑖 ∈ K(𝑛)[𝑘] with
deg𝑘(�̃�𝑖) < deg𝑘(�̃�𝑖), and 𝑞𝑖 ∈ W𝐾 such that 𝜎𝑖

𝑛(𝑇 ) = Δ𝑘(𝑔𝑖𝐻) + (�̃�𝑖/�̃�𝑖 + 𝑞𝑖/𝑣)𝐻.
The assertion follows by noticing

𝜎𝑖
𝑛(𝑇 ) = Δ𝑘(𝑔𝑖𝐻) +

(︂
�̃�𝑖𝐵/�̃�𝑖

𝐵
+ 𝑞𝑖

𝑣

)︂
𝐻.

Under the assumptions of Theorem 6.7, applying Algorithm 3.17 to 𝑇 w.r.t. 𝑘
yields 𝑇 = Δ𝑘(𝑔𝐻)+𝑟𝐻, where 𝑔 ∈ K(𝑛, 𝑘) and 𝑟 is a residual form w.r.t. 𝐾. By
Theorems 4.6 and 4.10, 𝑏 and the significant denominator 𝑟𝑑 of 𝑟 are shift-related
w.r.t. 𝑘, and thus so are the respective shift-homogeneous components. W.l.o.g.,
assume that 𝑏 is shift-homogeneous (then so is 𝑟𝑑). Let (𝑃𝑏, {𝜆𝑏, 𝜇𝑏}, 𝜉𝑏) be a
univariate representation of 𝑏 and (𝑃𝑟𝑑

, {𝜆𝑟𝑑
, 𝜇𝑟𝑑

}, 𝜉𝑟𝑑
) be one of 𝑟𝑑. Definition 4.5

yields that (𝜆𝑏, 𝜇𝑏) = (𝜆𝑟𝑑
, 𝜇𝑟𝑑

) and for each integer 𝑖, there exists a unique
integer 𝑗 and another integer ℓ𝑖𝑗 such that

𝑃𝑏(𝑧)𝛿
𝑖

= 𝜎
ℓ𝑖𝑗

𝑘

(︁
𝑃𝑟𝑑

(𝑧)𝛿
𝑗)︁

= 𝑃𝑟𝑑
(𝑧 + 𝜇𝑟𝑑

ℓ𝑖𝑗)𝛿
𝑗

with 𝛿 = 𝛿(𝜆𝑏,𝜇𝑏).

Moreover, the nonzero coefficients of 𝜉𝑏 are exactly the same as those of 𝜉𝑟𝑑
. In

summary, we have the following remark.

Remark 6.8. Although the form of 𝐵 in Theorem 6.7 depends on the choice
of 𝑏, the shift-equivalence classes w.r.t. ∼𝑛,𝑘 as well as the degree of 𝐵 w.r.t. 𝑘
depend only on the hypergeometric term 𝑇 .
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6.3 Upper and lower order bounds

In this section, we show that Theorem 6.7 implies that some residual forms
{𝑎𝑖/𝑏𝑖+𝑞𝑖/𝑣}𝑖≥0 satisfying (6.2) form a finite-dimensional vector space over K(𝑛),
and then derive an upper bound for the order of minimal telescopers.

Theorem 6.9. With the assumptions of Theorem 6.7, we have that the order of
a minimal telescoper for 𝑇 w.r.t. 𝑘 is no more than

max{deg𝑘(𝑢), deg𝑘(𝑣)} − Jdeg𝑘(𝑣 − 𝑢) ≤ deg𝑘(𝑢) − 1K +
𝑠∑︁

𝑗=1
𝜇𝑗𝑚𝑗 deg𝑘(𝑃𝑗),

where J𝜙K equals 1 if 𝜙 is true, otherwise it is 0.

Proof. Let 𝐿 =
∑︀𝜌

𝑖=0 𝑒𝑖𝑆
𝑖
𝑛 be a minimal telescoper for 𝑇 w.r.t. 𝑘, where 𝜌 ∈ N

and 𝑒0, . . . , 𝑒𝜌 ∈ K(𝑛) not all zero. By Theorem 6.7, there exists 𝐵 ∈ K(𝑛)[𝑘]
such that (6.4) holds for every nonnegative integer 𝑖. Then by Theorem 5.7, the
residual forms {𝑎𝑖/𝐵 + 𝑞𝑖/𝑣}𝜌

𝑖=0 are linearly dependent over K(𝑛); equivalently,
the following linear system with unknowns 𝑒0, . . . , 𝑒𝜌⎧⎨⎩𝐴𝜌 = 𝑒0𝑎0 + 𝑒1𝑎1 + · · · + 𝑒𝜌𝑎𝜌 = 0

𝑄𝜌 = 𝑒0𝑞0 + 𝑒1𝑞1 + · · · + 𝑒𝜌𝑞𝜌 = 0
(6.6)

has a nontrivial solution in K(𝑛)𝜌+1. Since deg𝑘(𝑎𝑖) < deg𝑘(𝐵),

deg𝑘(𝐴𝜌) < deg𝑘(𝐵) =
𝑠∑︁

𝑗=1
𝜇𝑗𝑚𝑗 deg𝑘(𝑃𝑗). (6.7)

Note that W𝐾 is a vector space, so 𝑄𝜌 ∈ W𝐾 . By Proposition 3.15, the number
of nonzero terms w.r.t. 𝑘 in 𝑄𝜌 is no more than the dimension dimK(𝑛)(W𝐾),
which is bounded by

max{deg𝑘(𝑢),deg𝑘(𝑣)} − Jdeg𝑘(𝑣 − 𝑢) ≤ deg𝑘(𝑢) − 1K. (6.8)

Comparing coefficients of like powers of 𝑘 of the linear system (6.6) yields at most

deg𝑘(𝐴𝜌) + dimK(𝑛)(W𝐾) + 1 (6.9)

equations. Hence this system has nontrivial solutions whenever the order 𝜌 ex-
ceeds deg𝑘(𝐴𝜌) + dimK(𝑛)(W𝐾). It implies that the order of a minimal telescoper
for 𝑇 w.r.t. 𝑘 is no more than the number (6.9). Therefore, the theorem follows
by (6.7) and (6.8).

In addition, we can further obtain a lower order bound for telescopers for 𝑇 .



58 Chapter 6. Order Bounds for Minimal Telescopers

Theorem 6.10. With the assumptions of Theorem 6.7, further assume that 𝑇
is not summable w.r.t. 𝑘. Then the order of a telescoper for 𝑇 w.r.t. 𝑘 is at least

max
𝑝|𝑏, deg𝑘(𝑝)>0

multiplicity 𝛼

monic & irred.

min
{︁
𝜌 ∈ N ∖ {0} : 𝜎ℓ

𝑘(𝑝)𝛼 | 𝜎𝜌
𝑛(𝑏) for some ℓ ∈ Z

}︁
.

Proof. Let 𝐿 =
∑︀𝜌

𝑖=0 𝑒𝑖𝑆
𝑖
𝑛 be a minimal telescoper for 𝑇 w.r.t. 𝑘, where 𝜌 ∈ N

and 𝑒0, . . . , 𝑒𝜌 ∈ K(𝑛) not all zero. Since 𝑇 is not summable w.r.t. 𝑘, we have
𝜌 ≥ 1. By the modified Abramov-Petkovšek reduction, (6.2) holds for 1 ≤ 𝑖 ≤ 𝜌.
Since 𝐿 is a minimal telescoper, 𝑒0 ̸= 0 and by Theorem 5.7,

𝑒0
𝑎

𝑏
+ 𝑒1

𝑎1
𝑏1

+ · · · + 𝑒𝜌

𝑎𝜌

𝑏𝜌
= 0.

By partial fraction decomposition, for any monic irreducible factor 𝑝 of 𝑏 with
deg𝑘(𝑝) > 0 and multiplicity 𝛼 > 0, there exists an integer 𝑖 with 1 ≤ 𝑖 ≤ 𝜌
so that 𝑝𝛼 is also a factor of 𝑏𝑖. By Theorem 6.4, 𝑏𝑖 ≈𝑘 𝜎𝑖

𝑛(𝑏). Thus there is a
factor 𝑝′ of 𝜎𝑖

𝑛(𝑏) with multiplicity at least 𝛼 such that 𝑝′ ∼𝑘 𝑝. Let 𝑖𝑝 be the
minimal one with this property. Then the assertion follows by the fact that for
each factor 𝑝 of 𝑏 there exists no telescoper for 𝑇 of order less than 𝑖𝑝.

Together with the bounds given above, we can further develop a variant of
Algorithm 5.6 by omitting step 4.5 for each loop until the loop index 𝑖 reaches
and exceeds the lower bound.

Algorithm 6.11 (Bound and Reduction-based creative telescoping).
Input: A hypergeometric term 𝑇 over F(𝑘).
Output: A minimal telescoper for 𝑇 w.r.t. 𝑘 and a corresponding certificate if
telescopers exist; “No telescoper exists!”, otherwise.

1–3 Similar to steps 1 – 3 of Algorithm 5.6.
4 Compute the upper bound 𝑏𝑢 ∈ N and lower bound 𝑏𝑙 ∈ N for the order

of minimal telescopers for 𝑇 w.r.t. 𝑘, respectively.
5 Set 𝑁 = 𝜎𝑛(𝐻)/𝐻 and 𝑅 = ℓ0𝑟0, where ℓ0 is an indeterminate.

For 𝑖 = 1, 2, . . . , 𝑏𝑢 do
5.1 Similar to steps 4.1 – 4.3 of Algorithm 5.6, compute 𝑔𝑖, 𝑟𝑖 ∈ K(𝑛, 𝑘)

such that (5.4) holds, and 𝑅+ ℓ𝑖𝑟𝑖 is a residual form w.r.t. 𝐾,
where ℓ𝑖 is an indeterminate.

5.2 Update 𝑅 to 𝑅+ ℓ𝑖𝑟𝑖. If 𝑖 > 𝑏𝑙 then find ℓ𝑗 ∈ F such that 𝑅 = 0
by solving a linear system in ℓ0, . . . , ℓ𝑖 over F.
If there is a nontrivial solution, return

(︁∑︀𝑖
𝑗=0 ℓ𝑗𝑆

𝑗
𝑛,
∑︀𝑖

𝑗=0 ℓ𝑗𝑔𝑗𝐻
)︁
.
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6.4 Comparison of bounds

In 2005, upper and lower bounds for the order of telescopers for hypergeometric
terms have been studied in [49] and [6], respectively. In this section, we are going
to review these known bounds and also compare them to our bounds.

6.4.1 Apagodu-Zeilberger upper bound

Let 𝑇 be a proper hypergeometric term over K(𝑛, 𝑘), i.e., it can be written in the
form

𝑇 = 𝑝𝑤𝑛𝑧𝑘
𝑚∏︁

𝑖=1

(𝛼𝑖𝑛+ 𝛼′
𝑖𝑘 + 𝛼′′

𝑖 − 1)!(𝛽𝑖𝑛− 𝛽′
𝑖𝑘 + 𝛽′′

𝑖 − 1)!
(𝜇𝑖𝑛+ 𝜇′

𝑖𝑘 + 𝜇′′
𝑖 − 1)!(𝜈𝑖𝑛− 𝜈 ′

𝑖𝑘 + 𝜈 ′′
𝑖 − 1)!

, (6.10)

where 𝑝 ∈ K[𝑛, 𝑘], 𝑤, 𝑧 ∈ K, 𝑚 ∈ N is fixed, 𝛼𝑖, 𝛼
′
𝑖, 𝛽𝑖, 𝛽

′
𝑖, 𝜇𝑖, 𝜇

′
𝑖, 𝜈𝑖, 𝜈

′
𝑖 are nonnega-

tive integers and 𝛼′′
𝑖 , 𝛽

′′
𝑖 , 𝜇

′′
𝑖 , 𝜈

′′
𝑖 ∈ K . Further assume that there exist no integers 𝑖

and 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑚 such that(︀
𝛼𝑖 = 𝜇𝑗 and 𝛼′

𝑖 = 𝜇′
𝑗 and 𝛼′′

𝑖 − 𝜇′′
𝑗 ∈ N

)︀
or

(︀
𝛽𝑖 = 𝜈𝑗 and 𝛽′

𝑖 = 𝜈 ′
𝑗 and 𝛽′′

𝑖 − 𝜈 ′′
𝑗 ∈ N

)︀
.

We refer to this as the generic situation. Then Apagodu and Zeilberger [49] stated
that the order of a minimal telescoper for 𝑇 w.r.t. 𝑘 is bounded by

𝐵𝐴𝑍 = max
{︃

𝑚∑︁
𝑖=1

(𝛼′
𝑖 + 𝜈 ′

𝑖),
𝑚∑︁

𝑖=1
(𝛽′

𝑖 + 𝜇′
𝑖)
}︃
,

and this bound is generically sharp.
We now show that 𝐵𝐴𝑍 is at least the order bound given in Theorem 6.9.

Reordering the factorial terms in (6.10) if necessary, let 𝒮 be the maximal set of
integers 𝑖 with 1 ≤ 𝑖 ≤ 𝑚 satisfying(︀

𝛼𝑖 = 𝜇𝑖 and 𝛼′
𝑖 = 𝜇′

𝑖 and 𝜇′′
𝑖 − 𝛼′′

𝑖 ∈ N
)︀

or
(︀
𝛽𝑖 = 𝜈𝑖 and 𝛽′

𝑖 = 𝜈 ′
𝑖 and 𝜈 ′′

𝑖 − 𝛽′′
𝑖 ∈ N

)︀
.

Rewrite 𝑇 as

𝑟𝑤𝑛𝑧𝑘
𝑚∏︁

𝑖=1, 𝑖/∈𝒮

(𝛼𝑖𝑛+ 𝛼′
𝑖𝑘 + 𝛼′′

𝑖 − 1)!(𝛽𝑖𝑛− 𝛽′
𝑖𝑘 + 𝛽′′

𝑖 − 1)!
(𝜇𝑖𝑛+ 𝜇′

𝑖𝑘 + 𝜇′′
𝑖 − 1)!(𝜈𝑖𝑛− 𝜈 ′

𝑖𝑘 + 𝜈 ′′
𝑖 − 1)!

,

where 𝑟 ∈ K(𝑛, 𝑘). For 𝑞 ∈ K[𝑛, 𝑘] and 𝑚 ∈ N, let

𝑞𝑚 = 𝑞(𝑞 + 1)(𝑞 + 2) · · · (𝑞 +𝑚− 1)
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with the convention 𝑞0 = 1. By an easy calculation,

𝐾 = 𝑧
∏︁

𝑖

(𝛼𝑖𝑛+ 𝛼′
𝑖𝑘 + 𝛼′′

𝑖 )𝛼
′
𝑖(𝜈𝑖𝑛− 𝜈 ′

𝑖𝑘 + 𝜈 ′′
𝑖 − 𝜇′

𝑖)𝜈
′
𝑖

(𝜇𝑖𝑛+ 𝜇′
𝑖𝑘 + 𝜇′′

𝑖 )𝜇
′
𝑖(𝛽𝑖𝑛− 𝛽′

𝑖𝑘 + 𝛽′′
𝑖 − 𝛽′

𝑖)𝛽
′
𝑖

(6.11)

where the product runs over all 𝑖 from 1 to 𝑚 such that 𝑖 /∈ 𝒮, 𝛼′
𝑖, 𝛽

′
𝑖 > 0

and 𝜇′
𝑖, 𝜈

′
𝑖 > 0, is a kernel of 𝑇 and 𝑆 = 𝑟 is a corresponding shell. Let 𝐾 = 𝑢/𝑣

with 𝑢, 𝑣 ∈ K(𝑛)[𝑘] and gcd(𝑢, 𝑣) = 1. Note that the right-hand side of (6.11)
already has the reduced form, then a straightforward calculation yields

deg𝑘(𝑢) =
𝑚∑︁

𝑖=1,𝑖/∈𝒮

(𝛼′
𝑖 + 𝜈 ′

𝑖) and deg𝑘(𝑣) =
𝑚∑︁

𝑖=1,𝑖/∈𝒮

(𝛽′
𝑖 + 𝜇′

𝑖).

Applying the modified Abramov-Petkovšek reduction to 𝑇 w.r.t. 𝑘 yields (6.3),
in which 𝑏 is integer-linear. Since 𝑏 only comes from the shift-free part of the
denominator of 𝑟, it factors into shift-inequivalent integer-linear polynomials of
degree one which are separately shift-equivalent to either (𝜇𝑖𝑛 + 𝜇′

𝑖𝑘 + 𝜇′′
𝑖 ) or

(𝛽𝑖𝑛 − 𝛽′
𝑖𝑘 + 𝛽′′

𝑖 ) w.r.t. 𝑛, 𝑘 for some 𝑖 ∈ 𝒮. Note that each 𝑖 in 𝒮 corresponds
to at most one integer-linear factor of 𝑏, and increases the multiplicity of the
corresponding factor in 𝑏 by at most 1. Hence, the bound given in Theorem 6.9
is no more than

max{deg𝑘(𝑢), deg𝑘(𝑣)} − Jdeg𝑘(𝑣 − 𝑢) ≤ deg𝑘(𝑢) − 1K +
𝑚∑︁

𝑖=1,𝑖∈𝒮
(𝛽′

𝑖 + 𝜇′
𝑖),

which is exactly equal to
𝐵𝐴𝑍 − Jdeg𝑘(𝑣 − 𝑢) ≤ deg𝑘(𝑢) − 1K,

since
∑︀𝑚

𝑖=1,𝑖∈𝒮(𝛼′
𝑖 + 𝜈 ′

𝑖) =
∑︀𝑚

𝑖=1,𝑖∈𝒮(𝛽′
𝑖 + 𝜇′

𝑖).
In general, i.e., in the generic situation, the order bound in Theorem 6.9 is

almost the same as 𝐵𝐴𝑍 , which is not suprising since 𝐵𝐴𝑍 is already generically
sharp. However, our bound can be much better in some special examples.
Example 6.12. Consider a rational function

𝑇 = 𝛼2𝑘2 + 𝛼2𝑘 − 𝛼𝛽𝑘 + 2𝛼𝑛𝑘 + 𝑛2

(𝑛+ 𝛼𝑘 + 𝛼)(𝑛+ 𝛼𝑘)(𝑛+ 𝛽𝑘) ,

where 𝛼, 𝛽 are positive integers and 𝛼 ̸= 𝛽. Rewriting 𝑇 into the proper form
(6.10) yields 𝐵𝐴𝑍 = 𝛼+𝛽. On the other hand, 1 is the only kernel of 𝑇 since 𝑇 is
a rational function. By the modified Abramov-Petkovšek reduction, 𝑏 = 𝑛 + 𝛽𝑘
in (6.3). By Theorem 6.9, a minimal telescoper for 𝑇 w.r.t. 𝑘 has order no more
than 𝛽, which is in fact the real order of minimal telescopers for 𝑇 w.r.t. 𝑘.
Remark 6.13. Together with [4, Theorem 10], the upper order bound 𝐵𝐴𝑍 on
minimal telescopers derived in [49] can be also applied to non-proper hyperge-
ometric terms. On the other hand, Theorem 6.9 can be directly applied to any
hypergeometric term provided that its telescopers exist.



6.5. Implementation and timings 61

6.4.2 Abramov-Le lower bound

With Convention 6.2, further assume that 𝑇 has the initial reduction (6.3), in
which 𝑏 is integer-linear. Let 𝐻 ′ = 𝐻/𝑣. A direct calculation leads to

𝜎𝑘(𝐻 ′)
𝐻 ′ = 𝑢

𝜎𝑘(𝑣) ,

which can be easily checked to be shift-reduced w.r.t. 𝑘. Let 𝑑′ ∈ K(𝑛)[𝑘] be the
denominator of 𝜎𝑛(𝐻 ′)/𝐻 ′. Then the algorithm LowerBound in [6] asserts that
the order of telescopers for 𝑇 w.r.t. 𝑘 is at least

𝐵𝐴𝐿 = max
𝑝|𝑏

irred. & monic
deg𝑘(𝑝)>0

min

⎧⎪⎪⎨⎪⎪⎩𝜌 ∈ N ∖ {0} :
𝜎ℓ

𝑘(𝑝) | 𝜎𝜌
𝑛(𝑏)

or

𝜎ℓ
𝑘(𝑝) | 𝜎𝜌−1

𝑛 (𝑑′) for some ℓ ∈ Z

⎫⎪⎪⎬⎪⎪⎭
Comparing to 𝐵𝐴𝐿 from above, one easily sees that the lower bound given in
Theorem 6.10 can be better but never worse than 𝐵𝐴𝐿.

Example 6.14. Consider a hypergeometric term

𝑇 = 1
(𝑛− 𝛼𝑘 − 𝛼)(𝑛− 𝛼𝑘 − 2)! ,

where 𝛼 ∈ N and 𝛼 > 1. By the algorithm LowerBound, a telescoper for 𝑇 w.r.t. 𝑘
has order at least 2. On the other hand, a telescoper for 𝑇 w.r.t. 𝑘 has order at
least 𝛼 by Theorem 6.10. In fact, 𝛼 is exactly the order of minimal telescopers
for 𝑇 w.r.t. 𝑘.

6.5 Implementation and timings

In Maple 18, we have implemented Algorithm 6.11 and embedded it into the
package ShiftReductionCT, under the name of BoundReductionCT. For a de-
tailed explanation, one may refer to Appendix A.

In this section, we focus on the two procedures – BoundReductionCT and
ReductionCT in the package ShiftReductionCT, and their runtime is compared.
All timings are measured in seconds on a Linux computer with 388Gb RAM and
twelve 2.80GHz Dual core processors. No parallelism was used in this experiment.
Moreover, a comparison of the memory requirements is given in Appendix B. For
brevity, we denote

• RCT𝑡𝑐: the procedure ReductionCT in ShiftReductionCT, which com-
putes a minimal telescoper and a corresponding normalized certificate;
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• RCT𝑡: the procedure ReductionCT in ShiftReductionCT, which computes
a minimal telescoper without constructing a certificate.

• BRCT𝑡𝑐: the procedure BoundReductionCT in ShiftReductionCT, which
computes a minimal telescoper and a corresponding normalized certificate;

• BRCT𝑡: the procedure BoundReductionCT in ShiftReductionCT, which
computes a minimal telescoper without constructing a certificate.

• LB: the lower bound for telescopers given in Theorem 6.10.
• order: the order of the resulting minimal telescoper.

Example 6.15. Consider the same hypergeometric term as in Example 6.14, i.e.,

𝑇 = 1
(𝑛− 𝛼𝑘 − 𝛼)(𝑛− 𝛼𝑘 − 2)! ,

where 𝛼 is an integer greater than 1. For different choices of 𝛼, Table 6.1 shows
the timings of the above procedures. Note that since the term 𝑇 in this example
is very simple, there is little difference in the timings for the two procedures with
and without construction of a certificate.

𝛼 RCT𝑡 RCT𝑡𝑐 BRCT𝑡 BRCT𝑡𝑐 LB order
20 2.00 2.02 1.07 1.13 20 20
30 7.01 7.19 2.86 2.96 30 30
40 20.08 20.13 7.06 7.18 40 40
50 42.15 42.68 14.96 15.05 50 50
60 104.07 106.31 25.54 25.93 60 60
70 225.67 229.04 45.76 45.97 70 70

Table 6.1: Timing comparison of two reduction-basedcreative telescoping with
and without construction of a certificate for Example 6.15 (in seconds)

Example 6.16 (Example 6 in [6]). Consider the hypergeometric term

𝑇 = Δ𝑘 (𝑇1) + 𝑇2,

where

𝑇1 = 1
(𝑛𝑘 − 1)(𝑛− 𝛼𝑘 − 2)𝑚(2𝑛+ 𝑘 + 3)! and 𝑇2 = 1

(𝑛− 𝛼𝑘 − 2)(2𝑛+ 𝑘 + 3)!

for 𝛼,𝑚 positive integers. For different choices of 𝛼 and𝑚, we compare the timings
of the procedures from above. Table 6.2 shows the final experimental results.
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(𝑚,𝛼) RCT𝑡 RCT𝑡𝑐 BRCT𝑡 BRCT𝑡𝑐 LB order
(1,1) 0.20 0.24 0.20 0.23 1 2
(1,10) 5.25 9.56 4.60 8.74 10 11
(1,15) 57.06 76.01 37.73 58.69 15 16
(1,20) 538.59 656.99 264.04 324.09 20 21
(2,10) 5.29 9.11 4.43 8.36 10 11
(2,15) 79.34 96.48 40.26 54.85 15 16
(2,20) 574.00 658.20 282.54 377.84 20 21

Table 6.2: Timing comparison of two reduction-basedcreative telescoping with
and without construction of a certificate for Example 6.16 (in seconds)

Remark 6.17. Compared to linear dependence, determining linear independence
takes much less time because with high probability, independence can be rec-
ognized by a computation in a homomorphic image. For this reason, the proce-
dure BoundReductionCT makes no big difference from the procedure ReductionCT
if the lower bound is far away from the real order of minimal telescopers. In fact,
their perform almost the same in this case.
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Chapter 7

D-finite Functions and
P-recursive Sequences

In this chapter, we recall [34, 41] basic notions related to the class of D-finite
functions and P-recursive sequences, and also present some useful properties.

7.1 Basic concepts

Recall [41] that a formal power series is an infinite series of the form

𝑓(𝑧) =
∞∑︁

𝑛=0
𝑎𝑛𝑧

𝑛,

where 𝑧 is a formal indeterminate. It generalizes the notions of polynomials and
power series in some sense. A formal power series differs from a polynomial in
that it allows an infinite number of terms, and it differs from power series by
assuming a formal variable and ignoring analytic properties. One way to view a
formal power series 𝑓(𝑧) is to take it as an infinite sequence (𝑎𝑛)∞

𝑛=0, where the
powers indicate the order of terms. We will also call a formal power series 𝑓(𝑥)
the generating function of its coefficient sequence (𝑎𝑛)∞

𝑛=0. Note that these three
notions – formal power series, sequences, generating functions – all refer to the
same object.

For a ring 𝑅, we denote by 𝑅[[𝑧]] the ring of formal power series endowed
with termwise addition (+) and Cauchy product ( · ):(︃ ∞∑︁

𝑛=0
𝑎𝑛𝑧

𝑛

)︃
+
(︃ ∞∑︁

𝑛=0
𝑏𝑛𝑧

𝑛

)︃
=

∞∑︁
𝑛=0

(𝑎𝑛 + 𝑏𝑛) 𝑧𝑛,

(︃ ∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛

)︃
·

(︃ ∞∑︁
𝑛=0

𝑏𝑛𝑧
𝑛

)︃
=

∞∑︁
𝑛=0

(︃
𝑛∑︁

𝑘=0
𝑎𝑘𝑏𝑛−𝑘

)︃
𝑧𝑛,

67



68 Chapter 7. D-finite Functions and P-recursive Sequences

and by 𝑅N the ring of infinite sequences endowed with termwise addition (+) and
Hadamard product (⊙):

(𝑎𝑛)∞
𝑛=0 + (𝑏𝑛)∞

𝑛=0 = (𝑎𝑛 + 𝑏𝑛)∞
𝑛=0,

(𝑎𝑛)∞
𝑛=0 ⊙ (𝑏𝑛)∞

𝑛=0 = (𝑎𝑛𝑏𝑛)∞
𝑛=0.

Also recall [34] that a complex function 𝑓(𝑧) is called analytic at a point 𝜁 ∈ C
if for any 𝑧 in a neighborhood of 𝜁, it can be represented by a convergent power
series over C,

𝑓(𝑧) =
∞∑︁

𝑛=0
𝑎𝑛(𝑧 − 𝜁)𝑛, where 𝑎𝑛 ∈ C for all 𝑛 ∈ N.

A function is analytic in an open set if it is analytic at every point of the set.
Throughout the chapter, let 𝑅 be a subring of C and F be a subfield of C.

We consider linear operators that act on sequences or power series and analytic
functions. Recall from the previous chapters that we write 𝜎𝑛 for the shift operator
w.r.t. 𝑛 which maps a sequence (𝑎𝑛)∞

𝑛=0 to (𝑎𝑛+1)∞
𝑛=0. Also we denote by F[𝑛]⟨𝑆𝑛⟩

the ring of linear recurrence operators of the form 𝐿 := 𝑝0 + 𝑝1𝑆𝑛 + · · · + 𝑝𝜌𝑆
𝜌
𝑛,

with 𝑝0, . . . , 𝑝𝜌 ∈ F[𝑛], where 𝑆𝑛𝑟 = 𝜎𝑛(𝑟)𝑆𝑛 for all 𝑟 ∈ F[𝑛]. This ring forms an
Ore algebra. Analogously, we write 𝐷𝑧 for the derivation operator w.r.t. 𝑧 which
maps a power series or function 𝑓(𝑧) to its derivative 𝑓 ′(𝑧) = 𝑑

𝑑𝑧𝑓(𝑧). Also the set
of linear operators of the form 𝐿 := 𝑝0 +𝑝1𝐷𝑧 + · · ·+𝑝𝜌𝐷

𝜌
𝑧 , with 𝑝0, . . . , 𝑝𝜌 ∈ F[𝑧],

forms an Ore algebra; we denote it by F[𝑧]⟨𝐷𝑧⟩. For an introduction to Ore
algebras and their actions, please refer to [17]. When 𝑝𝜌 ̸= 0, we call 𝜌 the order
of the operator and lc(𝐿) := 𝑝𝜌 its leading coefficient.
Definition 7.1.

1. A sequence (𝑎𝑛)∞
𝑛=0 ∈ 𝑅N is called P-recursive or D-finite over F if there

exists a nonzero operator 𝐿 =
∑︀𝜌

𝑗=0 𝑝𝑗(𝑛)𝑆𝑗
𝑛 ∈ F[𝑛]⟨𝑆𝑛⟩ such that

𝐿 · 𝑎𝑛 = 𝑝𝜌(𝑛)𝑎𝑛+𝜌 + · · · + 𝑝1(𝑛)𝑎𝑛+1 + 𝑝0(𝑛)𝑎𝑛 = 0
for all 𝑛 ∈ N.

2. A formal power series 𝑓(𝑧) ∈ 𝑅[[𝑧]] is called D-finite over F if there exists
a nonzero operator 𝐿 =

∑︀𝜌
𝑗=0 𝑝𝑗(𝑧)𝐷𝑗

𝑧 ∈ F[𝑧]⟨𝐷𝑧⟩ such that

𝐿 · 𝑓(𝑧) = 𝑝𝜌(𝑧)𝐷𝜌
𝑧𝑓(𝑧) + · · · + 𝑝1(𝑧)𝐷𝑧𝑓(𝑧) + 𝑝0(𝑧)𝑓(𝑧) = 0.

3. A formal power series 𝑓(𝑧) ∈ F[[𝑧]] is called algebraic over F if there exists
a nonzero bivariate polynomial 𝑃 (𝑧, 𝑦) ∈ F[𝑧, 𝑦] such that 𝑃 (𝑧, 𝑓(𝑧)) = 0.

In general, D-finite power series are called D-finite functions instead. A for-
mal power series is D-finite if and only if its coefficient sequence is P-recursive.
Many elementary functions like rational functions, exponentials, logarithms, sine,
algebraic functions, etc., as well as many special functions, like hypergeometric se-
ries, the error function, Bessel functions, etc., are D-finite. Hence their respective
coefficient sequences are P-recursive.
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7.2 Useful properties

The class of D-finite functions (resp. P-recursive sequences) is closed under cer-
tain operations: addition, multiplication, derivative (resp. forward shift) and in-
tegration (resp. summation). In particular, the set of D-finite functions (resp. P-
recursive sequences) forms a left-F[𝑧]⟨𝐷𝑧⟩-module (resp. a left-F[𝑛]⟨𝑆𝑛⟩-module).
Also, if 𝑓 is a D-finite function and 𝑔 is an algebraic function, then the compo-
sition 𝑓 ∘ 𝑔 is D-finite. These and further closure properties are easily proved by
linear algebra arguments, whose proofs can be found for instance in [59, 57, 41].
We will make free use of these facts.

We will be considering singularities of D-finite functions. Recall from the clas-
sical theory of linear differential equations [40] that a linear differential equation
𝑝0(𝑧)𝑓(𝑧) + · · · + 𝑝𝜌(𝑧)𝑓 (𝜌)(𝑧) = 0 with polynomial coefficients 𝑝0, . . . , 𝑝𝜌 ∈ F[𝑧]
and 𝑝𝜌 ̸= 0 has a basis of analytic solutions in a neighborhood of every point
𝜁 ∈ C, except possibly at roots of 𝑝𝜌. The roots of 𝑝𝜌 are therefore called the
singularities of the equation (or the corresponding linear operator). If 𝜁 ∈ C is a
singularity of the equation but the equation nevertheless admits a basis of analytic
solutions at this point, we call it an apparent singularity. It is well-known [40, 25]
that for any given linear differential equation with some apparent and some non-
apparent singularities, we can always construct another linear differential equa-
tion (typically of higher order) whose solution space contains the solution space of
the first equation and whose only singularities are the non-apparent singularities
of the first equation. This process is known as desingularization.

For later use, we will give a proof of the composition closure property for
D-finite functions which pays attention to the singularities.

Theorem 7.2. Let 𝑃 (𝑧, 𝑦) ∈ F[𝑧, 𝑦] be a square-free polynomial of degree 𝑑, and
let 𝐿 ∈ F[𝑧]⟨𝐷𝑧⟩ be nonzero. Let 𝜁 ∈ C be such that 𝑃 defines 𝑑 distinct analytic
algebraic functions 𝑔(𝑧) with 𝑃 (𝑧, 𝑔(𝑧)) = 0 in a neighborhood of 𝜁, and assume
that for none of these functions, the value 𝑔(𝜁) ∈ C is a singularity of 𝐿. Fix a
solution 𝑔 of 𝑃 and an analytic solution 𝑓 of 𝐿 defined in a neighborhood of 𝑔(𝜁).
Then there exists a nonzero operator 𝑀 ∈ F[𝑧]⟨𝐷𝑧⟩ with 𝑀 · (𝑓 ∘ 𝑔) = 0 which
does not have 𝜁 among its singularities.

Proof. (borrowed from [42]) Consider the operator �̃� = 𝐿(𝑔, (𝑔′)−1𝐷𝑧) ∈ F(𝑧)⟨𝐷𝑧⟩.
It is easy to check that 𝐿 · 𝑓 = 0 if and only if �̃� · (𝑓 ∘ 𝑔) = 0 for every solution 𝑔
of 𝑃 near 𝜁. Therefore, if 𝑓1, . . . , 𝑓𝜌 is a basis of the solution space of 𝐿 near 𝑔(𝜁),
then 𝑓1 ∘ 𝑔, . . . , 𝑓𝜌 ∘ 𝑔 is a basis of the solution space of �̃� near 𝜁.

Let 𝑔1, . . . , 𝑔𝑑 be all the solutions of 𝑃 near 𝜁, and let 𝑀 be the least common
left multiple of all the operators 𝐿(𝑔𝑗 , (𝑔′

𝑗)−1𝐷𝑧). Then the solution space of 𝑀
near 𝜁 is generated by all the functions 𝑓𝑖 ∘ 𝑔𝑗 . Since the coefficients of 𝑀 are
symmetric w.r.t. the conjugates 𝑔1, . . . , 𝑔𝑑, they belong to the ground field F(𝑧),
and after clearing denominators (from the left) if necessary, we may assume that
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𝑀 is an operator in F[𝑧]⟨𝐷𝑧⟩ whose solution space is generated by functions that
are analytic at 𝜁. Therefore, by the remarks made about desingularization, it is
possible to replace 𝑀 by an operator (possibly of higher order) which does not
have 𝜁 among its singularities.

By a similar argument, we see that algebraic extensions of the coefficient field
of the recurrence operators are useless. Moreover, it is also not useful to make F
bigger than the quotient field of 𝑅.
Lemma 7.3.

1. If E is an algebraic extension field of F and (𝑎𝑛)∞
𝑛=0 is P-recursive over E,

then it is also P-recursive over F.
2. If 𝑅 ⊆ F and (𝑎𝑛)∞

𝑛=0 ∈ 𝑅N is P-recursive over F, then it is also P-recursive
over Quot(𝑅), the quotient field of 𝑅.

3. If F is closed under complex conjugation and (𝑎𝑛)∞
𝑛=0 is P-recursive over F,

then so are (�̄�𝑛)∞
𝑛=0, (Re(𝑎𝑛))∞

𝑛=0, and (Im(𝑎𝑛))∞
𝑛=0.

Proof. 1. Let 𝐿 ∈ E[𝑛]⟨𝑆𝑛⟩ be an annihilating operator of (𝑎𝑛)∞
𝑛=0. Then,

since 𝐿 has only finitely many coefficients, 𝐿 ∈ F(𝜃)[𝑛]⟨𝑆𝑛⟩ for some 𝜃 ∈ E.
Let 𝑀 be the least common left multiple of all the conjugates of 𝐿. Then 𝑀
is an annihilating operator of (𝑎𝑛)∞

𝑛=0 which belongs to F[𝑛]⟨𝑆𝑛⟩. The claim
follows.

2. Let us write K = Quot(𝑅). Let 𝐿 ∈ F[𝑛]⟨𝑆𝑛⟩ be a nonzero annihilating
operator of (𝑎𝑛)∞

𝑛=0. Since F is an extension field of K, it is a vector space
over K. Write

𝐿 =
𝜌∑︁

𝑚=0

𝑑𝑚∑︁
𝑗=0

𝑝𝑚𝑗𝑛
𝑗𝑆𝑚

𝑛 ,

where 𝑟, 𝑑𝑚 ∈ N and 𝑝𝑚𝑗 ∈ F not all zero. Then the set of the coefficients 𝑝𝑖𝑗

belongs to a finite dimensional subspace of F. Let {𝛼1, . . . , 𝛼𝑠} be a basis of
this subspace over K. Then for each pair (𝑚, 𝑗), there exists 𝑐𝑚𝑗ℓ ∈ K such
that 𝑝𝑚𝑗 =

∑︀𝑠
ℓ=1 𝑐𝑚𝑗ℓ𝛼ℓ, which gives

0 = 𝐿 · 𝑎𝑛 =
𝑠∑︁

ℓ=1
𝛼ℓ

⎛⎝ 𝜌∑︁
𝑚=0

𝑑𝑚∑︁
𝑗=0

𝑐𝑚𝑗ℓ𝑛
𝑗𝑎𝑛+𝑚

⎞⎠
⏟  ⏞  

=:𝑏𝑛∈K

.

For all 𝑛 ∈ N, it follows from the linear independence of {𝛼1, . . . , 𝛼𝑠} over K
that 𝑏𝑛 = 0. Therefore

𝜌∑︁
𝑚=0

⎛⎝ 𝑑𝑚∑︁
𝑗=0

𝑐𝑚𝑗ℓ𝑛
𝑗

⎞⎠
⏟  ⏞  

∈K[𝑛]

𝑆𝑚
𝑛 · 𝑎𝑛 = 0 for all 𝑛 ∈ N and ℓ = 1, . . . , 𝑠.
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Thus (𝑎𝑛)∞
𝑛=0 has a nonzero annihilating operator with coefficients in K[𝑛].

3. Since (𝑎𝑛)∞
𝑛=0 is P-recursive over F, there exists a nonzero operator 𝐿

in F[𝑛]⟨𝑆𝑛⟩ such that 𝐿 · 𝑎𝑛 = 0. Hence �̄� · �̄�𝑛 = 0 where �̄� is the op-
erator obtained from 𝐿 by taking the complex conjugate of each coefficient.
Since F is closed under complex conjugation by assumption, we see that
�̄� belongs to F[𝑛]⟨𝑆𝑛⟩, and hence (�̄�𝑛)∞

𝑛=0 is P-recursive over F.
Because of Re(𝑎𝑛) = 1

2(𝑎𝑛 + �̄�𝑛) and Im(𝑎𝑛) = 1
2𝑖(𝑎𝑛 − �̄�𝑛) with 𝑖 the

imaginary unit, the other two assertions follow by closure properties.

Of course, all the statements hold analogously for D-finite functions instead
of P-recursive sequences.

If we consider a D-finite function as an analytic complex function defined in a
neighborhood of zero, then this function can be extended by analytic continuation
to any point in the complex plane except for finitely many ones, namely the singu-
larities of the given function. In this sense, D-finite functions can be evaluated at
any non-singular point by means of analytic continuation. Numerical evaluation
algorithms for D-finite functions have been developed in [26, 62, 63, 64, 47, 48],
where the last two references also provide a Maple implementation, namely the
NumGfun package, for computing such evaluations. These algorithms perform
arbitrary-precision evaluations with full error control.





Chapter 8

D-finite Numbers1

As mentioned in the introduction, the class of algebraic numbers and the class of
algebraic functions are naturally connected to each other. For instance, evaluating
an algebraic function over Q at an algebraic point gives an algebraic number. Also
the values of compositional inverses of algebraic functions at algebraic points are
algebraic. In particular, roots of an algebraic function over Q are all algebraic
numbers. Moreover, we will see below that every algebraic number can appear as
a limit of the coefficient sequence of an algebraic function. However, the class of
algebraic numbers is quite small. Almost all real and complex numbers are not
algebraic, including many important numbers like 𝜋 and Euler’s number e.

Motivated by the above relation, we aim to establish a similar correspondence
between numbers and the class of D-finite functions. To this end, we introduce
the following class of numbers.

Definition 8.1. Let 𝑅 be a subring of C and let F be a subfield of C.
1. A number 𝜉 ∈ C is called D-finite (with respect to 𝑅 and F) if there ex-

ists a convergent sequence (𝑎𝑛)∞
𝑛=0 in 𝑅N with lim𝑛→∞ 𝑎𝑛 = 𝜉 and some

polynomials 𝑝0, . . . , 𝑝𝜌 ∈ F[𝑛], 𝑝𝜌 ̸= 0, not all zero, such that

𝑝0(𝑛)𝑎𝑛 + 𝑝1(𝑛)𝑎𝑛+1 + · · · + 𝑝𝜌(𝑛)𝑎𝑛+𝜌 = 0

for all 𝑛 ∈ N.
2. The set of all D-finite numbers with respect to 𝑅 and F is denoted by 𝒟𝑅,F.

If 𝑅 = F, we also write 𝒟F := 𝒟F,F for short.

It turns out that the class of D-finite numbers is closely related to the class
of (regular or singular) holonomic constants [35], i.e., the set of all finite values
of D-finite functions at (regular or singular) algebraic points.

In this chapter, we show that D-finite numbers are in fact holonomic con-
stants, and conversely, the regular holonomic constants, i.e., the values D-finite

1The main results in this chapter are joint work with M. Kauers [39].
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functions can assume at non-singular algebraic number arguments, are essen-
tially D-finite numbers over the Gaussian rational field. Together with the work
on arbitrary-precision evaluation of D-finite functions [26, 62, 63, 64, 47, 48], it
follows that D-finite numbers are computable in the sense that for every D-finite
number 𝜉 there exists an algorithm which for any given 𝑛 ∈ N computes a nu-
meric approximation of 𝜉 with a guaranteed precision of 10−𝑛. Consequently, all
non-computable numbers have no chance to be D-finite. Besides these artificial
examples, we do not know of any explicit real numbers which are not in 𝒟Q, and
we believe that it may be very difficult to find some.

We see from Definition 8.1 that the class 𝒟𝑅,F depends on two subrings of C:
the ring 𝑅 where the sequence lives, and the field F over which the difference
equation is defined. Obviously, different choices of subrings may or may not lead
to different classes of D-finite numbers. One goal for this chapter is to investigate
what kind of choices of 𝑅 and F can be made without changing the resulting class
of D-finite numbers.

8.1 Examples of D-finite numbers

Throughout the chapter, 𝑅 is a subring of C and F is a subfield of C, as in Defi-
nition 8.1 above. Thanks to many mathematicians’ work, we can easily recognize
for many constants that they in fact belong to 𝒟Q.

Example 8.2.
1. Archimedes’ constant 𝜋. Let

𝑓𝑛 =
𝑛∑︁

𝑘=0

1
16𝑘

(︂
4

8𝑘 + 1 − 2
8𝑘 + 4 − 1

8𝑘 + 5 − 1
8𝑘 + 6

)︂
.

It is clear that (𝑓𝑛)∞
𝑛=0 is a P-recursive sequence in Q. According to the

Bailey-Borwein-Plouffe formula [13], lim𝑛→∞ 𝑓𝑛 = 𝜋.

2. Euler’s number e. By the Taylor series of the exponential function, we have

lim
𝑛→∞

𝑓𝑛 = e where 𝑓𝑛 =
𝑛∑︁

𝑘=0

1
𝑘! .

It is clear that the terms 𝑓𝑛 form a P-recursive sequence over Q.

3. Logarithmic value log 2. By the Taylor series of the natural logarithm, we
find a P-recursive sequence (𝑓𝑛)∞

𝑛=0 ∈ QN with

𝑓𝑛 =
𝑛∑︁

𝑘=1

(−1)𝑘+1

𝑘
,

such that lim𝑛→∞ 𝑓𝑛 = log(2).
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4. Pythagoras’ constant
√

2. One easily finds a P-recursive sequence (𝑓𝑛)∞
𝑛=0

over Q with

𝑓𝑛 =
𝑛∑︁

𝑘=0

(︂1
2
𝑘

)︂
,

and we have lim𝑛→∞ 𝑓𝑛 =
√

2 by the binomial theorem.

5. Apéry’s constant 𝜁(3). By the definition, we see that

lim
𝑛→∞

𝑓𝑛 = 𝜁(3) with 𝑓𝑛 =
𝑛∑︁

𝑘=1

1
𝑘3 .

It is readily seen that (𝑓𝑛)∞
𝑛=0 ∈ QN is D-finite.

6. The number 1/𝜋. Thanks to Ramanujan, we know that the terms

𝑓𝑛 =
𝑛∑︁

𝑘=0

(︂
2𝑘
𝑘

)︂3 42𝑘 + 5
212𝑘+4 ,

tend to 1/𝜋 as 𝑛 → ∞ and form a P-recursive sequence over Q.

7. Euler’s constant 𝛾. A desired P-recursive sequence is found by Fischler and
Rivoal at their work [31]. They showed that

lim
𝑛→∞

𝑓𝑛 = 𝛾 with 𝑓𝑛 =
𝑛∑︁

𝑘=1
(−1)𝑘

(︂
𝑛

𝑘

)︂
1
𝑘

(︂
1 − 1

𝑘!

)︂
.

8. Any value of the Gamma function to a rational number Γ(𝛼) with 𝛼 < 1
in Q. Again, Fischler and Rivoal [31] proved that

lim
𝑛→∞

𝑓𝑛 = Γ(𝛼) with 𝑓𝑛 =
𝑛∑︁

𝑘=0

(︂
𝑛+ 𝛼

𝑘 + 𝛼

)︂
(−1)𝑘

𝑘!(𝑘 + 𝛼) .

8.2 Algebraic numbers

Before turning to general D-finite numbers, let us consider the subclass of al-
gebraic functions. We will show that in this case, the possible limits are pre-
cisely the algebraic numbers. For the purpose of this chapter, let us say that
a sequence (𝑎𝑛)∞

𝑛=0 ∈ FN is algebraic over F if the corresponding power series∑︀∞
𝑛=0 𝑎𝑛𝑧

𝑛 ∈ F[[𝑧]] is algebraic in the sense of Definition 7.1. Since algebraic
functions are D-finite (Abel’s theorem), it is clear that algebraic sequences are
P-recursive. We will write 𝒜F for the set of all numbers 𝜉 ∈ C which are limits
of convergent algebraic sequences over F.
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Recall [34] that two sequences (𝑎𝑛)∞
𝑛=0, (𝑏𝑛)∞

𝑛=0 are called asymptotically equiv-
alent, written 𝑎𝑛 ∼ 𝑏𝑛 (𝑛 → ∞), if the quotient 𝑎𝑛/𝑏𝑛 converges to 1 as 𝑛 → ∞.
Similarly, two complex functions 𝑓(𝑧) and 𝑔(𝑧) are called asymptotically equiv-
alent at a point 𝜁 ∈ C, written 𝑓(𝑧) ∼ 𝑔(𝑧) (𝑧 → 𝜁), if the quotient 𝑓(𝑧)/𝑔(𝑧)
converges to 1 as 𝑧 approaches 𝜁. These notions are connected by the following
classical theorem.

Theorem 8.3.
1. (Transfer theorem [33, 34]) For every 𝛼 ∈ C ∖ Z≤0 we have

[𝑧𝑛] 1
(1 − 𝑧)𝛼 ∼ 𝑛𝛼−1

Γ(𝛼) (𝑛 → ∞),

where Γ(𝑧) stands for the Gamma function and the notation [𝑧𝑛]𝑓(𝑧) refers
to the coefficient of 𝑧𝑛 in the power series 𝑓(𝑧) ∈ F[[𝑧]].

2. (Basic Abelian theorem [32]) Let (𝑎𝑛)∞
𝑛=0 ∈ FN be a sequence that satisfies

the asymptotic estimate

𝑎𝑛 ∼ 𝑛𝛼 (𝑛 → ∞),

where 𝛼 ≥ 0. Then the generating function 𝑓(𝑧) =
∑︀∞

𝑛=0 𝑎𝑛𝑧
𝑛 satisfies the

asymptotic estimate

𝑓(𝑧) ∼ Γ(𝛼+ 1)
(1 − 𝑧)𝛼+1 (𝑧 → 1−).

This estimate remains valid when 𝑧 tends to 1 in any sector with vertex at 1
symmetric about the horizontal axis, and with opening angle less than 𝜋.

To show that 𝒜F is in fact a field, we need the following lemma. It indicates
that depending on whether F is a real field or not, every real algebraic number
or every algebraic number can appear as a limit.

Lemma 8.4. Let 𝑝(𝑧) ∈ F[𝑧] be an irreducible polynomial of degree 𝑑. Then
there is a square-free polynomial 𝑃 (𝑧, 𝑦) ∈ F[𝑧, 𝑦] of degree 𝑑 in 𝑦 and admit-
ting 𝑑 distinct analytic algebraic functions 𝑓(𝑧) ∈ F[[𝑧]] with 𝑃 (𝑧, 𝑓(𝑧)) = 0 in a
neighborhood of 0 such that 1 is the only dominant singularity of each 𝑓 and

1. if F ⊆ R, then for each root 𝜉 ∈ F̄ ∩ R of 𝑝(𝑧) there exists a solution 𝑓(𝑧)
of 𝑃 (𝑧, 𝑦) with lim𝑛→∞[𝑧𝑛]𝑓(𝑧) = 𝜉;

2. if F ∖ R ̸= ∅, then for each root 𝜉 ∈ F̄ of 𝑝(𝑧) there exists a solution 𝑓(𝑧)
of 𝑃 (𝑧, 𝑦) with lim𝑛→∞[𝑧𝑛]𝑓(𝑧) = 𝜉.

Proof. The two assertions can be proved simultaneously as follows.
Let 𝜀 > 0 be such that any two (real or complex) roots of 𝑝 have a distance

of more than 𝜀 to each other. Such an 𝜀 exists because 𝑝 is a polynomial, and
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polynomials have only finitely many roots. The roots of a polynomial depend
continuously on its coefficients. Therefore there exists a real number 𝛿 > 0 so
that perturbing the coefficients by up to 𝛿 won’t perturb the roots by more
than 𝜀/2. Any positive smaller number than 𝛿 will have the same property. By
the choice of 𝜀, any such perturbation of the polynomial will have exactly one
(real or complex) root in each of the balls of radius 𝜀/2 entered at the roots of 𝑝.

Let 𝜉 be a root of 𝑝. If 𝜉 = 0, then 𝑝(𝑧) = 𝑧. Letting 𝑃 (𝑧, 𝑦) = 𝑦 yields
the assertions. Now assume that 𝜉 ̸= 0. Let 𝑚 ∈ F be the maximal modulus of
coefficients of 𝑝. Then 𝑚 ̸= 0 since 𝑝 is irreducible. Therefore, we always can find
a number 𝑎0 ∈ F such that |𝑎0 − 𝜉| < 𝛿/𝑚, with the 𝛿 from above. Indeed, we
have the following case distinction.
For part 1 where F ⊆ R, we only consider 𝜉 ∈ F̄∩R. In this case, F is dense in R
since F ⊇ Q. Hence such 𝑎0 ∈ F ⊆ R exists.
For part 2 where F ∖ R ̸= ∅, there exists a non-real complex number 𝛼 in F.
Therefore, Q(𝛼) is dense in C. Since Q(𝛼) ⊆ F, such 𝑎0 ∈ F is guaranteed by the
density of F in C.

After finding 𝑎0 ∈ F with |𝑎0 − 𝜉| < 𝛿/𝑚, for both cases, we have

|𝑝(𝑎0)| = |𝑝(𝑎0) − 𝑝(𝜉)| ≤ 𝑚|𝑎0 − 𝜉| < 𝛿.

Replace this 𝛿 by |𝑝(𝑎0)| for such a choice of 𝑎0. The remaining argument works
for both cases.

Consider the perturbation 𝑝(𝑦) = 𝑝(𝑦) − 𝑝(𝑎0)(1 − 𝑧). For any 𝑧 ∈ [0, 1],

|−𝑝(𝑎0)(1 − 𝑧)| < |𝑝(𝑎0)| = 𝛿.

Therefore, as 𝑧 moves from 0 to 1, each root of 𝑝(𝑦) − 𝑝(𝑎0) moves to the corre-
sponding root of 𝑝(𝑦), which belongs to the same ball. In particular, the root 𝑎0
of 𝑝|𝑧=0 will move to the root 𝜉 of 𝑝|𝑧=1. Define

𝑃 (𝑧, 𝑦) = 𝑝((1 − 𝑧)𝑦) − 𝑝(𝑎0)(1 − 𝑧) ∈ F[𝑧, 𝑦].

We claim that 𝑃 (𝑧, 𝑦) determines an analytic algebraic function 𝑓(𝑧) in F[[𝑧]]
with the dominant singularity 1 and whose coefficient sequence converges to 𝜉.
To prove this, we make an ansatz

𝑓(𝑧) =
∞∑︁

𝑛=0
𝑎𝑛𝑧

𝑛,

where the 𝑎0 is from above and (𝑎𝑛)∞
𝑛=1 are to determined. Observe that for any

𝑐(𝑧) ∈ F[𝑧], 𝑐(𝑧)/(1 − 𝑧) is a root of 𝑃 (𝑧, 𝑦) if and only if 𝑐(𝑧) is a root of 𝑝(𝑦),
so 𝑓(𝑧) admits the following Laurent expansion at 𝑧 = 1,

𝑓(𝑧) = 𝜉

1 − 𝑧
+

∞∑︁
𝑛=0

𝑏𝑛(1 − 𝑧)𝑛 for 𝑏𝑛 ∈ C.

Hence 𝑧 = 1 is a singularity of 𝑓(𝑧) as 𝜉 ̸= 0.
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The above argument also implies that 𝑧 = 1 is the only dominant singularity
of 𝑓(𝑧). Indeed, note that 𝑧 = 1 is the only root of the leading coefficient of 𝑃 (𝑧, 𝑦)
w.r.t. 𝑦, so the other singularities of 𝑓(𝑧) could only be branch points, i.e., roots of
discriminant of 𝑃 (𝑧, 𝑦) w.r.t. 𝑦. However, the choices of 𝜀 and 𝛿 make it impossible
for 𝑓(𝑧) to have branch points in the disk |𝑧| ≤ 1, because in order to have a
branch point, two roots of the polynomial 𝑃 (𝑧, 𝑦) w.r.t. 𝑦 would need to touch
each other, and we have ensured that they are always separated by more than 𝜀.
Consequently, 𝑧 = 1 is the dominant singularity of 𝑓(𝑧), which gives 𝑎𝑛 ∼ 𝜉
as 𝑛 → ∞ by part 1 of Theorem 8.3. Therefore lim𝑛→∞ 𝑎𝑛 = 𝜉 since 𝜉 ̸= 0.

To complete the proof, it remains to show that the coefficients of 𝑓(𝑧) are
indeed in F. This is observed by plugging the ansatz of 𝑓(𝑧) into 𝑃 (𝑧, 𝑦) and
comparing the coefficients of like powers of 𝑧 to zero. Since 𝑝(𝑧) is irreducible and
𝜉 is arbitrary, one sees that 𝑃 (𝑧, 𝑦) admits 𝑑 distinct analytic solutions in F[[𝑧]]
in a neighborhood of 0.

The following theorem clarifies the converse direction for algebraic sequences.
It turns out that every element in 𝒜F is algebraic over F.

Theorem 8.5. Let F be a subfield of C.
1. If F ⊆ R, then 𝒜F = F̄ ∩ R.
2. If F ∖ R ̸= ∅, then 𝒜F = F̄.

Proof. 1. Let 𝜉 ∈ F̄ ∩ R. Then there is an irreducible polynomial 𝑝(𝑧) ∈ F[𝑧]
such that 𝑝(𝜉) = 0. By part 1 of Lemma 8.4, 𝜉 is in fact a limit of an
algebraic sequence in FN, which implies 𝜉 ∈ 𝒜F.
To show the converse inclusion, we let 𝜉 ∈ 𝒜F. When 𝜉 = 0, there is
nothing to show. Assume that 𝜉 ̸= 0. Then there is an algebraic sequence
(𝑎𝑛)∞

𝑛=0 ∈ FN such that lim𝑛→∞ 𝑎𝑛 = 𝜉. Since 𝜉 ̸= 0, 𝑎𝑛 ∼ 𝜉 (𝑛 → ∞).
Let 𝑓(𝑧) =

∑︀∞
𝑛=0 𝑎𝑛𝑧

𝑛. Clearly 𝑓(𝑧) is an algebraic function over F. By
part 2 of Theorem 8.3, 𝑓(𝑧) ∼ 𝜉/(1 − 𝑧) (𝑧 → 1−), implying that 𝑧 = 1 is
a simple pole of 𝑓(𝑧) and

𝑓(𝑧) = 𝜉

1 − 𝑧
+

∞∑︁
𝑛=0

𝑏𝑛(1 − 𝑧)𝑛 for (𝑏𝑛)∞
𝑛=0 ∈ CN.

Setting 𝑔(𝑧) = 𝑓(𝑧)(1 − 𝑧) establishes that 𝑔(𝑧) = 𝜉 +
∑︀∞

𝑛=0 𝑏𝑛(1 − 𝑧)𝑛+1,
and then 𝑔(𝑧) is analytic at 1. Sending 𝑧 to 1 gives 𝑔(1) = 𝜉. By closure
properties, 𝑔(𝑧) is again an algebraic function over F. Thus 𝜉 = 𝑔(1) ∈ F̄∩R
as F ⊆ R.

2. By part 2 of Lemma 8.4 and a similar argument as above, we have 𝒜F = F̄.
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If we were to consider the class 𝒞F of limits of convergent sequences in F
satisfying linear difference equations with constant coefficients over F, sometimes
called C-finite sequences, then an argument analogous to the above proof would
imply that 𝒞F ⊆ F, because the power series corresponding to such sequences
are rational functions, and the values of rational functions over F at points in F
evidently gives values in F. The converse direction F ⊆ 𝒞F is trivial, so 𝒞F = F.

Corollary 8.6. If F ⊆ R, then F̄ = 𝒜F(𝑖) = 𝒜F[𝑖] = 𝒜F + 𝑖𝒜F, where 𝑖 is the
imaginary unit.

Proof. Since 𝒜F is a ring and 𝑖2 = −1 ∈ F ⊆ 𝒜F, we have 𝒜F[𝑖] = 𝒜F + 𝑖𝒜F.
Since 𝑖 ∈ F̄ and F ⊆ R, F̄ is closed under complex conjugation and then

F̄ = (F̄ ∩ R) + 𝑖(F̄ ∩ R) = 𝒜F + 𝑖𝒜F,

by part 1 of Theorem 8.5. It follows from part 2 of Theorem 8.5 that 𝒜F(𝑖) = F(𝑖).
Since 𝒜F ⊆ 𝒜F(𝑖) and 𝑖 ∈ 𝒜F(𝑖), we have

F̄ = 𝒜F + 𝑖𝒜F ⊆ 𝒜F(𝑖) = F(𝑖) = F̄.

The assertion holds.

The following lemma says that every element in F̄ can be represented as the
value at 1 of an analytic algebraic function vanishing at zero, provided that F is
dense in C. This will be used in the next section to extend the evaluation domain.

Lemma 8.7. Let F be a subfield of C with F ∖ R ̸= ∅. Let 𝑝(𝑧) ∈ F[𝑧] be an
irreducible polynomial of degree 𝑑. Assume that 𝜉1, . . . , 𝜉𝑑 are all the (distinct)
roots of 𝑝 in F̄. Then there is a square-free polynomial 𝑃 (𝑧, 𝑦) ∈ F[𝑧, 𝑦] of de-
gree 𝑑 in 𝑦 and admitting 𝑑 distinct analytic algebraic functions 𝑔1(𝑧), . . . , 𝑔𝑑(𝑧)
with 𝑃 (𝑧, 𝑔𝑗(𝑧)) = 0 in a neighborhood of 0 such that all 𝑔𝑗’s are analytic in the
disk |𝑧| ≤ 1 with 𝑔𝑗(0) = 0 and, after reordering (if necessary), 𝑔𝑗(1) = 𝜉𝑗.

Proof. By part 2 of Lemma 8.4, there exists a bivariate square-free polynomial
𝑃 (𝑧, 𝑦) ∈ F[𝑧, 𝑦] of degree 𝑑 in 𝑦 and admitting 𝑑 distinct analytic algebraic
functions 𝑓1(𝑧), . . . , 𝑓𝑑(𝑧) with 𝑃 (𝑧, 𝑓𝑗(𝑧)) = 0 in a neighborhood of 0 such that 1
is the only dominant singularity of each 𝑓𝑗(𝑧) and, after reordering (if necessary),

lim
𝑛→∞

[𝑧𝑛]𝑓𝑗(𝑧) = 𝜉𝑗 , 𝑗 = 1, . . . 𝑑.

If 𝜉𝑗 = 0 for some 𝑗 then 𝑝(𝑧) = 𝑧. Letting 𝑃 (𝑧, 𝑦) = 𝑦 yields the assertion.
Otherwise all roots 𝜉1, . . . , 𝜉𝑑 are nonzero, and thus [𝑧𝑛]𝑓𝑗(𝑧) ∼ 𝜉𝑗 (𝑛 → ∞) for
each 𝑗. By part 2 of Theorem 8.3,

𝑓𝑗(𝑧) ∼
𝜉𝑗

1 − 𝑧
(𝑧 → 1−),
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which implies that 𝑧 = 1 is a simple pole of each 𝑓𝑗 . Let 𝑔𝑗(𝑧) = 𝑓𝑗(𝑧)𝑧(1 − 𝑧).
Then 𝑔1(𝑧), . . . , 𝑔𝑑(𝑧) are distinct and each 𝑔𝑗(𝑧) ∈ F[[𝑧]] is analytic for any 𝑧 in
the disk |𝑧| ≤ 1. Moreover, 𝑔𝑗(0) = 0 and 𝑔𝑗(1) = 𝜉𝑗 . By closure properties, 𝑔𝑗(𝑧)
is again algebraic over F. Define a square-free polynomial

𝑃 (𝑧, 𝑦) =
𝑑∏︁

𝑗=1
(𝑦 − 𝑔𝑗(𝑧)) =

𝑑∏︁
𝑗=1

(︀
𝑦 − 𝑓𝑗(𝑧)𝑧(1 − 𝑧)

)︀
∈ F(𝑧)[𝑦].

Then 𝑃 ∈ F[𝑧, 𝑦] since 𝑃 is symmetric in 𝑓1, . . . , 𝑓𝑑. The lemma follows.

8.3 Rings of D-finite numbers

Let us now return to the study of D-finite numbers. Let 𝑅 be a subring of C
and F be a subfield of C. Recall that by Definition 8.1, the elements of 𝒟𝑅,F are
exactly limits of convergent sequences in 𝑅N which are P-recursive over F. Some
facts about P-recursive sequences translate directly into facts about 𝒟𝑅,F.

Proposition 8.8.
1. 𝑅 ⊆ 𝒟𝑅,F and 𝒜F ⊆ 𝒟F.
2. If 𝑅1 ⊆ 𝑅2 then 𝒟𝑅1,F ⊆ 𝒟𝑅2,F, and if F ⊆ E then 𝒟𝑅,F ⊆ 𝒟𝑅,E.
3. 𝒟𝑅,F is a subring of C. Moreover, if 𝑅 is an F-algebra then so is 𝒟𝑅,F.
4. If E is an algebraic extension field of F, then 𝒟𝑅,F = 𝒟𝑅,E.
5. If 𝑅 ⊆ F, then 𝒟𝑅,F = 𝒟𝑅,Quot(𝑅).
6. If 𝑅 and F are closed under complex conjugation, then so is 𝒟𝑅,F.

In this case, we have 𝒟𝑅,F ∩ R = 𝒟𝑅∩R,F.
Moreover, if the imaginary unit 𝑖 ∈ 𝒟𝑅,F then 𝒟𝑅,F = 𝒟𝑅∩R,F + 𝑖𝒟𝑅∩R,F.

Proof. 1. The first inclusion is clear because every element of 𝑅 is the limit
of a constant sequence, and every constant sequence is P-recursive. The
second inclusion follows from the fact that algebraic functions are D-finite,
and the coefficient sequences of D-finite functions are P-recursive.

2. Clear.

3. Follows directly from the corresponding closure properties for P-recursive
sequences.

4. Follows directly from part 1 of Lemma 7.3.

5. Follows directly from part 2 of Lemma 7.3.
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6. For any convergent sequence (𝑎𝑛)∞
𝑛=0 ∈ 𝑅N, we have

Re
(︁

lim
𝑛→∞

𝑎𝑛

)︁
= lim

𝑛→∞
Re(𝑎𝑛), Im

(︁
lim

𝑛→∞
𝑎𝑛

)︁
= lim

𝑛→∞
Im(𝑎𝑛),

and thus lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ �̄�𝑛. Hence the first assertion follows by
(�̄�𝑛)∞

𝑛=0 ∈ 𝑅N and part 3 of Lemma 7.3.
Since 𝑅 is closed under complex conjugation, (Re(𝑎𝑛))∞

𝑛=0 ∈ (𝑅 ∩ R)N.
Then the inclusion 𝒟𝑅,F ∩ R ⊆ 𝒟𝑅∩R,F can be shown similarly as the first
assertion. The converse direction holds by part 2. Thus 𝒟𝑅,F ∩R = 𝒟𝑅∩R,F.
If 𝑖 ∈ 𝒟𝑅,F, then 𝒟𝑅∩R,F + 𝑖𝒟𝑅∩R,F ⊆ 𝒟𝑅,F since 𝒟𝑅∩R,F ⊆ 𝒟𝑅,F. To show
the converse inclusion, let 𝜉 ∈ 𝒟𝑅,F. Then 𝜉 ∈ 𝒟𝑅,F by the first assertion.
Since 𝑖 ∈ 𝒟𝑅,F and 𝑅 is closed under complex conjugation, Re(𝜉), Im(𝜉)
both belong to 𝒟𝑅,F ∩ R = 𝒟𝑅∩R,F by the second assertion. Therefore we
have 𝜉 = Re(𝜉) + 𝑖 Im(𝜉) ∈ 𝒟𝑅∩R,F + 𝑖𝒟𝑅∩R,F.

Example 8.9.
1. We have 𝒟Q(

√
2),Q(𝜋,

√
2) = 𝒟Q(

√
2),Q(

√
2) = 𝒟Q(

√
2),Q. The first identity holds

by part 5, the second by part 4 of the proposition.
2. We have 𝒟Q̄,Q = 𝒟Q̄,R. The inclusion “⊆” is clear by part 2. For the inclu-

sion “⊇”, let 𝜉 ∈ 𝒟Q̄,R. Then 𝜉 = 𝑎+ 𝑖𝑏 for some 𝑎, 𝑏 ∈ R, and there exists
a sequence (𝑎𝑛 + 𝑖𝑏𝑛)∞

𝑛=0 in Q̄N and a nonzero operator 𝐿 ∈ R[𝑛]⟨𝑆𝑛⟩ such
that 𝐿 · (𝑎𝑛 + 𝑖𝑏𝑛) = 0 and lim𝑛→∞(𝑎𝑛 + 𝑖𝑏𝑛) = 𝑎+ 𝑖𝑏. Since the coefficients
of 𝐿 are real, we then have 𝐿 · 𝑎𝑛 = 0 and 𝐿 · 𝑏𝑛 = 0. Furthermore, we see
that lim𝑛→∞ 𝑎𝑛 = 𝑎 and lim𝑛→∞ 𝑏𝑛 = 𝑏. Therefore,

𝑎, 𝑏 ∈ 𝒟Q̄∩R,R
part 5= 𝒟Q̄∩R,Q̄∩R

part 4= 𝒟Q̄∩R,Q,

which implies 𝑎+ 𝑖𝑏 ∈ 𝒟Q̄∩R,Q + 𝑖𝒟Q̄∩R,Q
part 6= 𝒟Q̄,Q, as claimed.

Lemma 8.7 motivates the following theorem, which says that every D-finite
number is essentially the value at 1 of an analytic D-finite function, and thus a
holonomic constant.

Theorem 8.10. Let 𝑅 be a subring of C and F be a subfield of C. Then for
any 𝜉 ∈ 𝒟𝑅,F, there exists 𝑔(𝑧) ∈ 𝑅[[𝑧]] D-finite over F and analytic at 1 such
that 𝜉 = 𝑔(1).

Proof. The statement is clear when 𝜉 = 0. Assume that 𝜉 is nonzero. Then there
exists a sequence (𝑎𝑛)∞

𝑛=0 ∈ 𝑅N, P-recursive over F, such that lim𝑛→∞ 𝑎𝑛 = 𝜉.
Since 𝜉 is nonzero, we have 𝑎𝑛 ∼ 𝜉 (𝑛 → ∞). Let 𝑓(𝑧) =

∑︀∞
𝑛=0 𝑎𝑛𝑧

𝑛. Then by
Theorem 8.3, we see that

𝑓(𝑧) ∼ 𝜉

1 − 𝑧
(𝑧 → 1−),
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which implies that 𝑧 = 1 is a simple pole of 𝑓(𝑧). Let 𝑔(𝑧) = 𝑓(𝑧)(1 − 𝑧). Then
𝑔(𝑧) belongs to 𝑅[[𝑧]] and is analytic at 𝑧 = 1. Write

𝑓(𝑧) = 𝜉

1 − 𝑧
+

∞∑︁
𝑛=0

𝑏𝑛(1 − 𝑧)𝑛 with 𝑏𝑛 ∈ C.

It follows that 𝑔(𝑧) = 𝑓(𝑧)(1 − 𝑧) = 𝜉+
∑︀∞

𝑛=0 𝑏𝑛(1 − 𝑧)𝑛+1, which gives 𝜉 = 𝑔(1).
The assertion follows by noticing that 𝑔(𝑧) is D-finite over F due to closure
properties.

Example 8.11. We have 𝜁(3) =
∑︀∞

𝑛=1
1

𝑛
3 = Li3(1), where Li3(𝑧) =

∑︀∞
𝑛=1

1
𝑛

3 𝑧
𝑛

is the polylogarithm function, D-finite over Q and analytic at 1.

Note that the above theorem implies that D-finite numbers are computable
when the ring 𝑅 and the field F consist of computable numbers. This allows the
construction of (artificial) numbers that are not D-finite.

Some kind of converse of Theorem 8.10 can be proved for the case when F is
not a subfield of R, namely F ∖ R ̸= ∅. Note that this condition is equivalent to
saying that F is dense in C. To this end, we first need to develop several lemmas.

The following lemma says that the value of a D-finite function at any non-
singular point in F̄ can be represented by the value at 1 of another D-finite
function.

Lemma 8.12. Let F be a subfield of C with F ∖ R ̸= ∅ and 𝑅 be a subring
of C containing F. Assume that 𝑓(𝑧) ∈ 𝒟𝑅,F[[𝑧]] is analytic and annihilated by a
nonzero operator 𝐿 ∈ F[𝑧]⟨𝐷𝑧⟩ with zero an ordinary point. Then for any non-
singular point 𝜁 ∈ F̄ of 𝐿, there exists an analytic function ℎ(𝑧) ∈ 𝒟𝑅,F[[𝑧]]
and a nonzero operator 𝑀 ∈ F[𝑧]⟨𝐷𝑧⟩ with 0 and 1 ordinary points such that
𝑀 · ℎ(𝑧) = 0 and 𝑓(𝜁) = ℎ(1).

Proof. Let 𝜁 ∈ F̄ be a non-singular point of 𝐿. Then there exists an irreducible
polynomial 𝑝(𝑧) ∈ F[𝑧] such that 𝑝(𝜁) = 0. Let 𝜁1 = 𝜁, . . . , 𝜁𝑑 be all the roots
of 𝑝 in F̄. By Lemma 8.7, there exists a square-free polynomial 𝑃 (𝑧, 𝑦) ∈ F[𝑧, 𝑦] of
degree 𝑑 in 𝑦 and admitting 𝑑 distinct analytic algebraic functions 𝑔1(𝑧), . . . , 𝑔𝑑(𝑧)
with 𝑃 (𝑧, 𝑔𝑗(𝑧)) = 0 in a neighborhood of 0. Moreover, 𝑔1(𝑧), . . . , 𝑔𝑑(𝑧) are all
analytic in the disk |𝑧| ≤ 1 with 𝑔𝑗(1) = 𝜁𝑗 and 𝑔𝑗(0) = 0.

Since 𝑔1(1) = 𝜁 is not a singularity of 𝐿 by assumption, none of 𝑔𝑗(1) = 𝜁𝑗 is a
singularity of 𝐿. Suppose otherwise that for some 2 ≤ ℓ ≤ 𝑑, the point 𝑔ℓ(1) = 𝜁ℓ

is a root of lc(𝐿). Since lc(𝐿) ∈ F[𝑧] and 𝑝 is the minimal polynomial of 𝜁ℓ over F,
we know that 𝑝 divides lc(𝐿) over F. Thus 𝜁 is also a root of lc(𝐿), a contradiction.

Note that 𝑔1(𝑧), . . . , 𝑔𝑑(𝑧) are analytic in the disk |𝑧| ≤ 1 and 𝑔𝑗(0) = 0. By
Theorem 7.2, there exists a nonzero operator 𝑀 ∈ F[𝑧]⟨𝐷𝑧⟩ with 𝑀 · (𝑓 ∘ 𝑔1) = 0
which does not have 0 or 1 among its singularities. By part 1 of Proposition 8.8,
F ⊆ 𝑅 ⊆ 𝒟𝑅,F. Since 𝑓(𝑧) ∈ 𝒟𝑅,F[[𝑧]] and 𝑔1(𝑧) ∈ F[[𝑧]] with 𝑔1(0) = 0, we
have 𝑓(𝑔1(𝑧)) ∈ 𝒟𝑅,F[[𝑧]]. Setting ℎ(𝑧) = 𝑓(𝑔1(𝑧)) completes the proof.
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With the above lemma, it suffices to consider the case when the evaluation
point is in 𝑅∩F. This is exactly what the next two lemmas are concerned about.
Lemma 8.13. Assume that 𝑓(𝑧) =

∑︀∞
𝑛=0 𝑎𝑛𝑧

𝑛 ∈ 𝑅[[𝑧]] is D-finite over F and
convergent in some neighborhood of 0. Let 𝜁 ∈ 𝑅∩F be in the disk of convergence.
Then 𝑓 (𝑘)(𝜁) ∈ 𝒟𝑅,F for all 𝑘 ∈ N.

Proof. For 𝑘 ∈ N, it is well-known that 𝑓 (𝑘)(𝑧) ∈ 𝑅[[𝑧]] is also D-finite and has the
same radius of convergence at zero as 𝑓(𝑧). Note that since 𝑓(𝑧) is D-finite over F,
so is 𝑓 (𝑘)(𝑧). Thus to prove the lemma, it suffices to show the case when 𝑘 = 0,
i.e., 𝑓(𝜁) ∈ 𝒟𝑅,F.

Since 𝑓(𝑧) is D-finite over F, the coefficient sequence (𝑎𝑛)∞
𝑛=0 is P-recursive

over F. Note that 𝜁 ∈ 𝑅 ∩ F is in the disk of convergence of 𝑓(𝑧) at zero, so

𝑓(𝜁) =
∞∑︁

𝑛=0
𝑎𝑛𝜁

𝑛 = lim
𝑛→∞

𝑛∑︁
ℓ=0

𝑎ℓ𝜁
ℓ.

Since (𝜁𝑛)∞
𝑛=0 is P-recursive over F, the assertion follows by noticing that the

sequence (
∑︀𝑛

ℓ=0 𝑎ℓ𝜁
ℓ)∞

𝑛=0 ∈ 𝑅N is P-recursive over F due to closure properties.

Example 8.14. Since exp(𝑧) =
∑︀∞

𝑛=0
1
𝑛!𝑧

𝑛 ∈ Q[[𝑧]] is D-finite over Q, and
converges everywhere, we get from the lemma that the numbers e, 1/e,

√
e belong

to 𝒟Q,Q. More precisely, since we are currently only considering non-real fields F,
we could say that the function exp(𝑧) is D-finite over Q̄, therefore e, 1/e,

√
e all

belong to 𝒟Q,Q̄, but by Proposition 8.8, 𝒟Q,Q̄ = 𝒟Q,Q.
Lemma 8.15. Let 𝑅 be a subring of C containing F. Let 𝑓(𝑧) =

∑︀∞
𝑛=0 𝑎𝑛𝑧

𝑛

in 𝒟𝑅,F[[𝑧]] be an analytic function. Assume that there exists a nonzero operator
𝐿 ∈ F[𝑧]⟨𝐷𝑧⟩ with zero an ordinary point such that 𝐿 · 𝑓(𝑧) = 0. Let 𝑟 > 0 be the
smallest modulus of roots of lc(𝐿) and let 𝜁 ∈ F with |𝜁| < 𝑟. Then 𝑓 (𝑘)(𝜁) ∈ 𝒟𝑅,F
for all 𝑘 ∈ N.

Proof. Let 𝜌 be the order of 𝐿. Since zero is an ordinary point of 𝐿, there exist
P-recursive sequences (𝑐(0)

𝑛 )∞
𝑛=0, . . . , (𝑐(𝜌−1)

𝑛 )∞
𝑛=0 in FN ⊆ 𝑅N with 𝑐(𝑚)

𝑗 equal to the
Kronecker delta 𝛿𝑚𝑗 for 𝑚, 𝑗 = 0, . . . , 𝜌 − 1, so that the set {

∑︀∞
𝑛=0 𝑐

(𝑚)
𝑛 𝑧𝑛}𝜌−1

𝑚=0
forms a basis of the solution space of 𝐿 near zero. Note that the singularities of
solutions of 𝐿 can only be roots of lc(𝐿). Hence the power series 𝑓(𝑧) =

∑︀∞
𝑛=0 𝑎𝑛𝑧

𝑛

as well as
∑︀∞

𝑛=0 𝑐
(𝑚)
𝑛 𝑧𝑛 for 𝑚 = 0, . . . , 𝜌 − 1 are convergent in the disk |𝑧| < 𝑟.

It follows from |𝜁| < 𝑟 and Lemma 8.13 that the set {
∑︀∞

𝑛=0 𝑐
(𝑚)
𝑛 𝜁𝑛}𝜌−1

𝑚=0 belongs
to 𝒟𝑅,F. Since 𝑎0, . . . , 𝑎𝜌−1 ∈ 𝒟𝑅,F,

𝑓(𝜁) =
∞∑︁

𝑛=0
𝑎𝑛𝜁

𝑛 = 𝑎0

∞∑︁
𝑛=0

𝑐(0)
𝑛 𝜁𝑛 + · · · + 𝑎𝜌−1

∞∑︁
𝑛=0

𝑐(𝜌−1)
𝑛 𝜁𝑛

is D-finite by closure properties. In the same vein, we find that for 𝑘 > 0, the
derivative 𝑓 (𝑘)(𝜁) also belongs to 𝒟𝑅,F.
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Example 8.16.
1. We know from Proposition 8.8 that

√
2 ∈ 𝒟Q. The series

(𝑧 + 1)
√

2 = 1 +
√

2𝑧 + (1 − 1√
2

)𝑧2 + · · · ∈ Q(
√

2)[[𝑧]] ⊆ 𝒟Q[[𝑧]]

is D-finite over Q, an annihilating operator is (𝑧 + 1)2𝐷2
𝑧 + (𝑧 + 1)𝐷𝑧 − 2.

Here we have the radius 𝑟 = 1. Taking 𝜁 =
√

2 − 1, the lemma implies
that

√
2

√
2 belongs to 𝒟Q.

2. Observe that the lemma refers to the singularities of the operator rather
than to the singularities of the particular solution at hand. For example, it
does not imply that 𝐽1(1) ∈ 𝒟Q,Q, where 𝐽1(𝑧) is the first Bessel function,
because its annihilating operator is 𝑧2𝐷2

𝑧 + 𝑧𝐷𝑧 + (𝑧2 − 1), which has a
singularity at 0. It is not sufficient that the particular solution 𝐽1(𝑧) ∈ Q[[𝑧]]
is analytic at 0. Of course, in this particular example we see from the series
representation 𝐽1(1) = 1

2
∑︀∞

𝑛=0
(−1/4)𝑛

(𝑛+1)𝑛!2
that the value belongs to 𝒟Q,Q.

3. The hypergeometric function 𝑓(𝑧) := 2𝐹1(1
3 ,

1
2 , 1, 𝑧 + 1

2) can be viewed as
an element of 𝒟Q,Q[[𝑧]]:

𝑓(𝑧) = 3√2
∞∑︁

𝑛=0

(1/3)𝑛(1/2)𝑛

𝑛!2
(−1)𝑛

⏟  ⏞  
∈𝒟Q

+
3√2
3

∞∑︁
𝑛=0

(1/2)𝑛(4/3)𝑛

(2)𝑛𝑛! (−1)𝑛

⏟  ⏞  
∈𝒟Q

𝑧

+ 2 3√2
3

∞∑︁
𝑛=0

(1/2)𝑛(7/3)𝑛

(3)𝑛𝑛! (−1)𝑛

⏟  ⏞  
∈𝒟Q

𝑧2 + · · · .

The function 𝑓 is annihilated by the operator

𝐿 = 3(2𝑧 − 1)(2𝑧 + 1)𝐷2
𝑧 + (22𝑧 − 1)𝐷𝑧 + 2.

This operator has a singularity at 𝑧 = 1/2, and there is no annihilating
operator of 𝑓 which does not have a singularity there. Although

𝑓(1/2) = Γ(1/6)
Γ(1/2)Γ(2/3)

is a finite and specific value, the lemma does not imply that this value is a
D-finite number.

Theorem 8.17. Let F be a subfield of C with F ∖ R ̸= ∅ and let 𝑅 be a subring
of C containing F. Assume that 𝑓(𝑧) ∈ 𝒟𝑅,F[[𝑧]] is analytic and there exists a
nonzero operator 𝐿 ∈ F[𝑧]⟨𝐷𝑧⟩ with zero an ordinary point such that 𝐿 ·𝑓(𝑧) = 0.
Further assume that 𝜁 ∈ F̄ is not a singularity of 𝐿. Then 𝑓 (𝑘)(𝜁) belongs to 𝒟𝑅,F
for all 𝑘 ∈ N.
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𝛽0 = 0

𝛽1
𝛽2 𝛽3

𝛽𝑠−2
𝛽𝑠−1

𝛽𝑠 = 𝜁

𝒫

𝑟0

𝑟1

𝑟2

𝑟𝑠−1

𝑟𝑠

Figure 8.1: a simple path 𝒫 with a finite cover
⋃︀𝑠

𝑗=0 ℬ𝑟𝑗
(𝛽𝑗) ( stands for the

roots of lc(𝐿))

Proof. By Lemma 8.12, it suffices to show the assertion holds for 𝜁 = 1 (or more
generally 𝜁 ∈ F). Now assume that 𝜁 ∈ F. We apply the method of analytic
continuation.

Let 𝒫 be a simple path with a finite cover
⋃︀𝑠

𝑗=0 ℬ𝑟𝑗
(𝛽𝑗), where 𝑠 ∈ N, 𝛽0 = 0,

𝛽𝑠 = 𝜁, 𝛽𝑗 ∈ F, 𝑟𝑗 > 0 is the distance between 𝛽𝑗 and the zero set of lc(𝐿),
and ℬ𝑟𝑗

(𝛽𝑗) is the open circle centered at 𝛽𝑗 and with radius 𝑟𝑗 . Moreover, 𝛽𝑗+1
is inside ℬ𝑟𝑗

(𝛽𝑗) for each 𝑗 (as illustrated by Figure 8.1). Such a path exists
because F is dense in C and the zero set of lc(𝐿) is finite. Since the path 𝒫 avoids
all roots of lc(𝐿), the function 𝑓(𝑧) is analytic along 𝒫. We next use induction
on the index 𝑗 to show that 𝑓 (𝑘)(𝛽𝑗) ∈ 𝒟𝑅,F for all 𝑘 ∈ N.

It is trivial when 𝑗 = 0 as 𝑓 (𝑘)(𝛽0) = 𝑓 (𝑘)(0) ∈ 𝒟𝑅,F for 𝑘 ∈ N by assump-
tion. Assume now that 0 < 𝑗 ≤ 𝑠 and 𝑓 (𝑘)(𝛽𝑗−1) ∈ 𝒟𝑅,F for all 𝑘 ∈ N. We
consider 𝑓(𝛽𝑗) and its derivatives.

Recall that 𝑟𝑗−1 > 0 is the distance between 𝛽𝑗−1 and the zero set of lc(𝐿).
Since 𝑓(𝑧) is analytic at 𝛽𝑗−1, it is representable by a convergent power series
expansion

𝑓(𝑧) =
∞∑︁

𝑛=0

𝑓 (𝑛)(𝛽𝑗−1)
𝑛! (𝑧 − 𝛽𝑗−1)𝑛 for all |𝑧 − 𝛽𝑗−1| < 𝑟𝑗−1.

By the induction hypothesis, 𝑓 (𝑛)(𝛽𝑗−1)/𝑛! ∈ 𝒟𝑅,F for all 𝑛 ∈ N and thus 𝑓(𝑧)
belongs to 𝒟𝑅,F[[𝑧 − 𝛽𝑗−1]].

Let 𝑍 = 𝑧 − 𝛽𝑗−1, i.e., 𝑧 = 𝑍 + 𝛽𝑗−1. Define 𝑔(𝑍) = 𝑓(𝑍 + 𝛽𝑗−1) and �̃� to
be the operator obtained by replacing 𝑧 in 𝐿 by 𝑍 + 𝛽𝑗 . Since 𝛽𝑗−1 ∈ F ⊆ 𝒟𝑅,F
and 𝐷𝑧 = 𝐷𝑍 , we have 𝑔(𝑍) ∈ 𝒟𝑅,F[[𝑍]] and �̃� ∈ F[𝑍]⟨𝐷𝑍⟩. Note that 𝐿·𝑓(𝑧) = 0
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and 𝛽𝑗−1 is an ordinary point of 𝐿 as 𝑟𝑗−1 > 0. It follows that �̃� · 𝑔(𝑍) = 0 and
zero is an ordinary point of �̃�. Moreover, we see that 𝑟𝑗−1 is now the smallest
modulus of roots of lc(�̃�). Since |𝛽𝑗 −𝛽𝑗−1| < 𝑟𝑗−1, applying Lemma 8.15 to 𝑔(𝑍)
yields

𝑓 (𝑘)(𝛽𝑗) = 𝑔(𝑘)(𝛽𝑗 − 𝛽𝑗−1) ∈ 𝒟𝑅,F for 𝑘 ∈ N.
Thus the assertion holds for 𝑗 = 𝑠. The theorem follows.

Example 8.18. By the above theorem, exp(
√

2) and log(1 +
√

3) both belong
to 𝒟Q. We also have e𝜋 ∈ 𝒟Q. This is because e𝜋 = (−1)−𝑖 with 𝑖 the imaginary
unit, is equal to the value of the D-finite function (𝑧 + 1)−𝑖 ∈ Q(𝑖)[[𝑧]] at 𝑧 = −2
(outside the radius of convergence; analytically continued in consistency with the
usual branch cut conventions) and then e𝜋 ∈ 𝒟Q(𝑖) ∩ R = 𝒟Q. Furthermore, as
remarked in the introduction, the numbers obtained by evaluating a G-function
at algebraic numbers which avoid the singularities of its annihilating operator are
in 𝒟Q(𝑖), because G-functions are D-finite.

8.4 Open questions

We have introduced the notion of D-finite numbers and made some first steps
towards understanding their nature. We believe that, similarly as for D-finite
functions, the class is interesting because it has good mathematical and com-
putational properties and because it contains many special numbers that are of
independent interest. We conclude this chapter with some possible directions of
future research.
Evaluation at singularities. While every singularity of a D-finite function must
also be a singularity of its annihilating operator, the converse is in general not
true. We have seen above that evaluating a D-finite function at a point which is
not a singularity of its annihilating operator yields a D-finite number. It would
be natural to wonder about the values of a D-finite function at singularities of its
annihilating operator, including those at which the given function is not analytic
but its evaluation is finite. Also, we always consider zero as an ordinary point of
the annihilating operator. If this is not the case, the method used in this chapter
fails, as pointed out by part 2 of Example 8.16.
Quotients of D-finite numbers. The set of algebraic numbers forms a field,
but we do not have a similar result for D-finite numbers. It is known that the
set of D-finite functions does not form a field. Instead, Harris and Sibuya [37]
showed that a D-finite function 𝑓 admits a D-finite multiplicative inverse if and
only if 𝑓 ′/𝑓 is algebraic. This explains for example why both e and 1/e are D-
finite, but it does not explain why both 𝜋 and 1/𝜋 are D-finite. It would be
interesting to know more precisely under which circumstances the multiplicative
inverse of a D-finite number is D-finite. Is 1/ log(2) a D-finite number? Are there
choices of 𝑅 and F for which 𝒟𝑅,F is a field?
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Roots of D-finite functions. A similar pending analogy concerns composi-
tional inverses. We know that if 𝑓 is an algebraic function, then so is its compo-
sitional inverse 𝑓−1. The analogous statement for D-finite functions is not true.
Nevertheless, it could still be true that the values of compositional inverses of
D-finite functions are D-finite numbers, although this seems somewhat unlikely.
A particularly interesting special case is the question whether (or under which
circumstances) the roots of a D-finite function are D-finite numbers.
Evaluation at D-finite number arguments. We see that the class 𝒞F of limits
of convergent C-finite sequences is the same as the values of rational functions
at points in F, namely the field F. Similarly, the class 𝒜F of limits of convergent
algebraic sequences essentially consists of the values of algebraic functions at
points in F̄. Continuing this pattern, is the value of a D-finite function at a D-
finite number again a D-finite number? If so, this would imply that also numbers
like eeee

are D-finite. Since 1/(1 − 𝑧) is a D-finite function, it would also imply
that D-finite numbers form a field.
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Appendix A

The ShiftReductionCT Package

In order to be able to experiment with the algorithms proposed in the first part
of this thesis, we have implemented all of them and encapsulated the procedures
as a Maple package, namely the ShiftReductionCT package. This package was
developed for Maple 18 and it is available upon request from the author. Here
is a description of the package.

> eval(ShiftReductionCT);
module( )

option package;
export ReductionCT , BoundReductionCT ,
ModifiedAbramovPetkovsekReduction,ShiftMAPReduction, IsSummable,
ShellReduction, KernelReductionCT , PolynomialReduction,
TranslateDRF , VerifyMAPReduction, VerifyRCT ;
description
"Creative Telescoping for Bivariate Hypergeometric Terms via
the Modified Abramov-Petkovsek Reduction";

end module

This appendix is intended to give a detailed instruction for the package. All export
commands will be discussed in the order of their first appearance in the thesis,
but only some of them will be emphasized particularly. By applying them to some
concrete examples, we show the usage of the package as well as its applications.
These examples are chosen to take virtually no computation time.

The appendix contains a whole Maple session. The inputs are given exactly
in the way how the commands need to be used in Maple and displayed in the
type of Maple notation, while the outputs are displayed in 2-D math notation.
To start with, we load the package in Maple.

> read(ShiftReductionCT):
> with(ShiftReductionCT):

91



92 Appendix A. The ShiftReductionCT Package

Commands related to Chapter 3

We first consider univariate hypergeometric terms. Let 𝑇 be the hypergeo-
metric term in Example 3.7 (or Example 3.19).

> T:=k^2*k!/(k+1);

𝑇 := 𝑘2𝑘!
𝑘 + 1

By commands from the built-in Maple package SumTools[Hypergeometric],
we find a kernel 𝐾 = 𝑘 + 1 and its corresponding shell 𝑆 = 𝑘2/(𝑘 + 1) of 𝑇 .

The command ShellReduction performs Algorithm 3.5 and returns a decom-
position of the form (3.3) for the shell 𝑆 with respect to its kernel 𝐾.

> res:=ShellReduction(numer(K),denom(K),numer(S),denom(S),k);

𝑟𝑒𝑠 :=
[︂[︂

− 1
𝑘 + 1

]︂
, −1, 𝑘 + 2, 𝑘

]︂
Using the notations in (3.3), we check the correctness by

> S1:=add(res[1][i],i=1..nops(res[1])):
> a:=res[2]: b:=res[3]: p:=res[4]:
> normal(K*subs(y=y+1,S1)-S1+(a/b+p/denom(K))-S);

0

The command PolynomialReduction, namely Algorithm 3.16, projects a poly-
nomial onto the image space of the map for polynomial reduction with respect
to a shift-reduced rational function, and the standard complement of the image
space.

> res:=PolynomialReduction(p,numer(K),denom(K),k);

𝑟𝑒𝑠 := [1], 0

Using the notations in Algorithm 3.16, we check the correctness by
> f:=add(res[1][i],i=1..nops(res[1])):
> q:=res[2]: normal(numer(K)*subs(k=k+1,f)-denom(K)*f+q-p);

0

The built-in Maple command SumDecomposition, which is in the package
SumTools[Hypergeometric], is implemented based on the Abramov-Petkovšek
reduction. It computes a minimal additive decomposition described in Section 3.1
for a given hypergeometric term.

> SumTools[Hypergeometric][SumDecomposition](T,k);
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⎡⎢⎢⎢⎢⎢⎣
𝑘

𝑘−1∏︁
_𝑘=1

(_𝑘 + 1)

𝑘 + 1 , −

𝑘−1∏︁
_𝑘=1

(_𝑘 + 1)

𝑘 + 2

⎤⎥⎥⎥⎥⎥⎦
To avoid solving any auxiliary recurrence equations explicitly, we present a

modified version of the Abramov-Petkovšek reduction, namely Algorithm 3.17,
and implement it as the command ModifiedAbramovPetkovsekReduction. This
command can be used in the following (default) way.

> res:=ModifiedAbramovPetkovsekReduction(T,k);

𝑟𝑒𝑠 :=
[︂[︂

𝑘

𝑘 + 1 ,−
1

𝑘 + 2

]︂
, 𝑘!
]︂

Using the notations in Algorithm 3.17, we have

> f:=res[1][1]: r:=res[1][2]: H:=res[2]:

The package also provides the command VerifyMAPReduction to verify the reduc-
tion. This command is used according to the presented form of the result. In the
default case, we say

> VerifyMAPReduction(res,T,k);
true

Moreover, we can change the outputs of ModifiedAbramovPetkovsekReduction by
specifying the third argument. For example, we would like to display the result
in terms of hypergeometric terms,

> res:=ModifiedAbramovPetkovsekReduction(T,k,output=
> hypergeometric);
> VerifyMAPReduction(res,T,k,output=hypergeometric);

𝑟𝑒𝑠 :=
[︂
𝑘𝑘!
𝑘 + 1 , − 𝑘!

𝑘 + 2

]︂
true

or we can also perform it as a list of functions, which specifies the standard form
of the residual forms.

> res:=ModifiedAbramovPetkovsekReduction(T,k,output=list);
> VerifyMAPReduction(res,T,k,output=list);

𝑟𝑒𝑠 :=
[︂[︂[︂

− 1
𝑘 + 1 , 0, 1

]︂
, [−1, 𝑘 + 2, 0]

]︂
, 𝑘!
]︂

true
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As mentioned in Section 3.3, we also implement a procedure based on the
modified Abramov-Petkovšek reduction, which is only used to determine hyper-
geometric summability and performs in a similar way as Gosper’s algorithm,
namely the command IsSummable.

> IsSummable(T,k);
false

The built-in Maple command for Gosper’s algorithm is Gosper in the package
SumTools[Hypergeometric].

> SumTools[Hypergeometric][Gosper](T,k);

Error, (in SumTools:-Hypergeometric:-Gosper) no solution found

Commands related to Chapter 4

In Chapter 4, we showed that the sum of two residual forms is congruent to
a residual form (see Theorem 4.19), which plays an important role in developing
the reduction-based creative telescoping algorithm for hypergeometric terms (i.e.,
Algorithm 5.6).

To prove Theorem 4.19, we introduced two congruences in Lemma 4.15. These
two congruences stand for two types of kernel reduction in the shift case, that
is, denominator type and numerator type, respectively. We implemented them
by the command KernelReduction. To call it in Maple, using the notations from
Lemma 4.15, one just says

> KernelReduction(p1,numer(K),denom(K),m,k,type=denominator);

or

> KernelReduction(p2,numer(K),denom(K),m,k,type=numerator);

The key idea of Algorithm 4.20 is to move the significant denominator of
a residual form to a required form according to a given residual form, so that
the resulting sum is again a residual form. This process was implemented as the
command TranslateDRF. We also provide a command named SignificantDenom to
extract the significant denominator of a residual form.

Now let’s consider Example 4.11. For 𝐾 = 1/𝑘 shift-reduced, we have two
residuals form w.r.t. 𝐾: 𝑟 = 1/(2𝑘 + 1) and 𝑠 = 1/(2𝑘 + 3).

> K:=1/k: r:=1/(2*k+1): s:=1/(2*k+3):

One can compute a residual form of 𝑟+ 𝑠 in terms of the significant denominator
of 𝑟 by
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> res:=TranslateDRF(s, SignificantDenom(r,K,k), K, k);
> S1:=res[1]: a:=res[2][1]: b:=res[2][2]: q:=res[2][3]:
> new:=r+normal(a/b)+q/denom(K); # evaluate the sum
> normal(K*subs(k=k+1, S1)-S1+new-r-s); # check the result

𝑏 := 𝑘 + 1
2

𝑟𝑒𝑠 :=
[︂
− 3

2(2𝑘 + 1) ,
[︂
−3

4 , 𝑘 + 1
2 ,

1
2

]︂]︂
𝑛𝑒𝑤 := − 1

2(2𝑘 + 1) + 1
2𝑘

0

This confirms the result given in Example 4.11. Of course, one can also compute
a residual form of 𝑟 + 𝑠 in terms of the significant denominator of 𝑠,

> b:=SignificantDenom(s,K,k);
> res:=TranslateDRF(r, b, K, k);
> new:=s+normal(res[2][1]/b)+res[2][2]/denom(K);
> normal(K*subs(k=k+1, res[1])-res[1]+new-r-s);

𝑟𝑒𝑠 :=
[︂
− 1

2𝑘 + 1 ,
[︂
−1

3 , 𝑘 + 3
2 ,

1
3

]︂]︂
𝑛𝑒𝑤 := 1

3(2𝑘 + 3) + 1
3𝑘

0

Commands related to Chapter 5

Now let’s turn our attention to bivariate hypergeometric terms. Consider the
following hypergeometric term from Example 5.10.

> T:=binomial(n,k)^3;

𝑇 := binomial(𝑛, 𝑘)3

Based on the modified Abramov-Petkovšek reduction, Algorithm 5.6 is im-
plemented in the command ReductionCT, which (by default) returns the (monic)
minimal telescoper for a given hypergeometric term.

> ReductionCT(T,n,k,Sn);

−8(𝑛2 + 2𝑛+ 1)
𝑛2 + 4𝑛+ 4

− (7𝑛2 + 21𝑛+ 16)𝑆𝑛
𝑛2 + 4𝑛+ 4

+ 𝑆𝑛2

As illustrated by the following commands, if a fifth argument is specified then
the command also returns a corresponding certificate, whose form depends on the
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specification. More precisely, we get a certificate as a list of a normalized rational
function and a hypergeometric term by saying

> res:=ReductionCT(T,n,k,Sn,output=normalized);

𝑟𝑒𝑠 :=
[︃

−8(𝑛2 + 2𝑛+ 1)
𝑛2 + 4𝑛+ 4

− (7𝑛2 + 21𝑛+ 16)𝑆𝑛
𝑛2 + 4𝑛+ 4

+ 𝑆𝑛2,

[︃
1

(−𝑛− 1 + 𝑘)3(𝑛2 + 4𝑛+ 4)(−𝑛− 2 + 𝑘)3

(︁
𝑘3(4𝑘3𝑛2 − 18𝑘2𝑛3 + 27𝑘𝑛4

− 14𝑛5 + 8𝑘3𝑛− 66𝑘2𝑛2 + 147𝑘𝑛3 − 102𝑛4 + 4𝑘3 − 78𝑘2𝑛+ 291𝑘𝑛2

− 290𝑛3 − 30𝑘2 + 249𝑘𝑛− 402𝑛2 + 78𝑘 − 272𝑛− 72)
)︃
, binomial(𝑛, 𝑘)3

]︃]︃
or get one as a list of a linear combination of several simple rational functions
and a hypergeometric term by

> res:=ReductionCT(T,n,k,Sn,output=unnormalized);

𝑟𝑒𝑠 :=
[︃

−8(𝑛2 + 2𝑛+ 1)
𝑛2 + 4𝑛+ 4

− (7𝑛2 + 21𝑛+ 16)𝑆𝑛
𝑛2 + 4𝑛+ 4

+ 𝑆𝑛2,

[︃
4(𝑛2 + 2𝑛+ 1)
𝑛2 + 4𝑛+ 4

−(7𝑛2 + 21𝑛+ 16)(𝑛3 + 3𝑛2 + 3𝑛+ 1)
(𝑛2 + 4𝑛+ 4)(−𝑛− 1 + 𝑘)3

−(𝑛+ 1)3(6𝑘2 + 3𝑘𝑛+ 𝑛2 + 6𝑘 + 4𝑛+ 4)
(𝑛2 + 4𝑛+ 4)(−𝑛− 1 + 𝑘)3

+ 1
(𝑛2 + 4𝑛+ 4)(−𝑛− 1 + 𝑘)3 (12𝑘2𝑛3 − 12𝑘𝑛4 + 11𝑛5 + 36𝑘2𝑛2

− 48𝑘𝑛3 + 62𝑛4 + 36𝑘2𝑛− 72𝑘𝑛2 + 140𝑛3 + 12𝑘2 − 48𝑘𝑛

+ 158𝑛2 − 12𝑘 + 89𝑛+ 20)

−((𝑛+ 1)3 + 3(𝑛+ 1)2 + 3𝑛+ 4)(𝑛+ 1)3

(−𝑛− 2 − 𝑘)3(−𝑛− 1 + 𝑘)3 ,

binomial(𝑛, 𝑘)3
]︃]︃
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The result returned by the command ReductionCT can be verified by the
command VerifyRCT.

> VerifyRCT(res,T,n,k,Sn);
true

Maple’s implementation for Zeilberger’s algorithm is the command Zeilberger,
which is also in the package SumTools[Hypergeometric].

> SumTools[Hypergeometric][Zeilberger](T,n,k,Sn);[︃
(𝑛2 + 4𝑛+ 4)𝑆𝑛2 + (−7𝑛2 − 21𝑛− 16)𝑆𝑛− 8𝑛2 − 16𝑛− 8,

1
(−𝑛− 2 + 𝑘)3(−𝑛− 1 + 𝑘)3

(︂(︂
𝑘3 +

(︂
−9

2𝑛− 15
2

)︂
𝑘2

+
(︂

27
4 𝑛

2 + 93
4 𝑛+ 39

2

)︂
𝑘 − 7

2𝑛
3 − 37

2 𝑛
2 − 32𝑛− 18

)︂

𝑘3 binomial(𝑛, 𝑘)3(4𝑛2 + 8𝑛+ 4)
)︁]︃

In view of Remark 5.9, we introduce the command ShiftMAPReduction, which
performs the same function as applying ModifiedAbramovPetkovsekReduction with
respect to 𝑘 to the 𝑚-th shift 𝜎𝑚

𝑛 (𝑇 ) for a bivariate hypergeometric term 𝑇 (𝑛, 𝑘)
but in a faster way as pointed out by the remark. Moreover, this command always
uses the same kernel independent of the value of 𝑚. Note that when 𝑚 = 0 the
command is the same as the command ModifiedAbramovPetkovsekReduction.

To illustrate this command, we consider the same hypergeometric term 𝑇 as
before.

> T:=binomial(n,k)^3:

Then it has a minimal additive decomposition

> ModifiedAbramovPetkovsekReduction(T,k);[︃[︃
−1

2 ,
1
2

3𝑘2𝑛− 3𝑘𝑛2 + 𝑛3 + 3𝑘2 + 3𝑘 + 1
(𝑘 + 1)3

]︃
,binomial(𝑛, 𝑘)3

]︃
For the first shift of 𝑇 w.r.t. 𝑛, we have

> ModifiedAbramovPetkovsekReduction(subs(n=n+1,T),k);[︃[︃
−1

2 ,
1
2

3𝑘2𝑛− 3𝑘𝑛2 + 𝑛3 + 6𝑘2 − 6𝑘𝑛+ 3𝑛2 + 3𝑛+ 2
(𝑘 + 1)3

]︃
,binomial(𝑛+ 1, 𝑘)3

]︃
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On the other hand, applying the command ShiftMAPReduction gives

> ShiftMAPReduction(T,n,k,1);[︃[︃
𝑛3 + 3𝑛2 + 3𝑛+ 1

(−𝑛− 1 + 𝑘)3 ,
𝑛3 + 3𝑛2 + 3𝑛+ 1

(𝑘 + 1)3

]︃
,binomial(𝑛, 𝑘)3

]︃

Commands related to Chapter 6

Combining the bounds given in Chapter 6, we implemented Algorithm 6.11
as the command BoundReductionCT. The function of this command is illustrated
as follows.

Consider Example 6.12 with 𝛼 = 5.

> alpha:=5: T:=1/((n-alpha*k-alpha)*(n-alpha*k-2)!);

𝑇 := 1
(−5𝑘 + 𝑛− 5)(−5𝑘 + 𝑛− 2)!

In Maple, the built-in command for the algorithm LowerBound [6] is also
named LowerBound in the package SumTools[Hypergeometric]. With only
three arguments, it returns a lower order bound of the telescopers for a given
hypergeometric term,

> SumTools[Hypergeometric][LowerBound](T,n,k);
2

Moreover, by specifying a fourth and a fifth argument, the command also gives
information about telescopers as well as certificates.

> SumTools[Hypergeometric][LowerBound](T,n,k,Sn,’Zpair’);
> Zpair;

2⎡⎣𝑆𝑛5 − 1,

⎡⎣ 1
Γ(𝑛+ 4) (5𝑘 − 𝑛)

⎛⎝ 𝑘−1∏︁
_𝑘=0

(−(5 _𝑘 − 𝑛− 3)(5 _𝑘 − 𝑛− 2)

(5 _𝑘 − 𝑛− 1)(5 _𝑘 − 𝑛+ 1)(5 _𝑘 − 𝑛)

⎞⎠⎤⎦
In the same fashion, our implementation for Algorithm 6.11, namely the com-

mand BoundReductionCT, with three arguments specified returns an upper bound
as well as a lower bound for the order of minimal telescopers for a given hyper-
geometric term.
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> BoundReductionCT(T,n,k);
[5, 10]

In addition, depending on the numbers of specified arguments and the specifi-
cations, the command performs in the same manner as the command ReductionCT
introduced above. To be precise, we have the following commands.

> BoundReductionCT(T,n,k,Sn);

𝑆𝑛5 − 1

> res:=BoundReductionCT(T,n,k,Sn,output=normalized):

𝑟𝑒𝑠 :=
[︃
𝑆𝑛5 − 1,

[︃
5

(5𝑘 − 𝑛)2(5𝑘 − 3 − 𝑛)(5𝑘 − 𝑛− 2)(5𝑘 − 1 − 𝑛)(5𝑘 − 𝑛+ 1)
,

− 1
5(−5𝑘 + 𝑛− 2)!

]︂]︂
> res:=BoundReductionCT(T,n,k,Sn,output=unnormalized);

𝑟𝑒𝑠 :=
[︂
𝑆𝑛5 − 1,

[︂
5

5𝑘 − 𝑛+ 5 − 5
5𝑘 − 𝑛+ 1 + 20

(5𝑘 − 𝑛+ 5)(5𝑘 − 𝑛+ 1)

+ 5
(5𝑘 − 𝑛)2(5𝑘 − 3 − 𝑛)(5𝑘 − 𝑛− 2)(5𝑘 − 1 − 𝑛)(5𝑘 − 𝑛+ 1)

,

− 1
5(−5𝑘 + 𝑛− 2)!

]︂]︂





Appendix B

Comparison of
Memory Requirements

In this section, we collect all comparisons of memory requirements between our
new procedures from the ShiftReductionCT package (see Appendix A) and
Maple’s implementations of known algorithms. All memory requirements are ob-
tained by the Maple command

> kernelopts("bytesused");

and measured in bytes on a Linux computer with 388Gb RAM and twelve 2.80GHz
Dual core processors. Recall that

• G: the procedure Gosper in SumTools[Hypergeometric], which is based
on Gosper’s algorithm;

• AP: the procedure SumDecomposition in SumTools[Hypergeometric],
which is based on the Abramov-Petkovšek reduction;

• Z: the procedure SumTools[Hypergeometric][Zeilberger], which is based
on Zeilberger’s algorithm;

• S: the procedure IsSummable in ShiftReductionCT, which determines
hypergeometric summability in a similar way as Gosper’s algorithm;

• MAP: the procedure ModifiedAbramovPetkovsekReduction in ShiftReduc-
tionCT, which is based on the modified reduction.

• RCT𝑡𝑐: the procedure ReductionCT in ShiftReductionCT, which com-
putes a minimal telescoper and a corresponding normalized certificate;

• RCT𝑡: the procedure ReductionCT in ShiftReductionCT, which computes
a minimal telescoper without constructing a certificate.

• BRCT𝑡𝑐: the procedure BoundReductionCT in ShiftReductionCT, which
computes a minimal telescoper and a corresponding normalized certificate;

101
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• BRCT𝑡: the procedure BoundReductionCT in ShiftReductionCT, which
computes a minimal telescoper without constructing a certificate.

• LB: the lower bound for telescopers given in Theorem 6.10.
• order: the order of the resulting minimal telescoper.

Tables for Example 3.23 and Example 3.24.

(𝜆, 𝜇) G AP S MAP
(0, 0) 1.80015e7 2.79579e7 2.19643e7 2.20057e7
(5, 5) 6.92148e7 5.45788e8 8.31337e7 1.00876e8

(10, 10) 1.06237e8 1.74321e9 1.63963e8 2.23078e8
(10, 20) 3.67295e8 4.22563e9 3.41155e8 7.14421e8
(10, 30) 9.08446e8 2.06166e10 5.73637e8 2.07008e9
(10, 40) 1.79107e9 3.74146e10 8.60492e8 5.01724e9
(10, 50) 3.19600e9 4.98811e10 1.16624e9 9.80644e9

Table B.1: Memory comparison of Gosper’s algorithm, the Abramov-Petkovšek
reduction and the modified version for random hypergeometric terms (in bytes)

(𝜆, 𝜇) G AP S MAP
(0, 0) 1.49566e8 3.83358e8 1.96563e8 1.97086e8
(5, 5) 2.76453e8 9.42523e8 2.40684e8 2.40927e8

(10, 10) 3.15859e8 1.86511e9 2.50334e8 2.50661e8
(10, 20) 6.81883e8 4.15802e9 3.19633e8 3.20250e8
(10, 30) 1.48580e9 7.60674e9 3.61856e8 3.60798e8
(10, 40) 2.66329e9 1.24394e10 3.81800e8 3.82879e8
(10, 50) 4.96349e9 2.22568e10 4.15063e8 4.14124e8

Table B.2: Memory comparison of Gosper’s algorithm, the Abramov-Petkovšek
reduction and the modified version for summable hypergeometric terms (in bytes)
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Tables for Example 5.11.

(𝑑1, 𝑑2, 𝛼, 𝜆, 𝜇) Z RCT𝑡𝑐 RCT𝑡 order
(1, 0, 1, 5, 5) 2.05992e9 5.36111e8 1.58646e8 4
(1, 0, 2, 5, 5) 6.13485e9 3.33929e9 9.01651e8 6
(1, 0, 3, 5, 5) 2.05569e10 1.12736e10 2.59005e9 7
(1, 8, 3, 5, 5) 2.84955e10 1.46063e10 3.24756e9 7
(2, 0, 1, 5, 10) 3.58374e10 6.87524e9 6.90891e8 4
(2, 0, 2, 5, 10) 3.03599e10 4.30070e10 7.44379e9 6
(2, 0, 3, 5, 10) 6.95166e10 1.29853e11 2.56292e10 7
(2, 3, 3, 5, 10) 7.63196e10 1.34622e11 2.78371e10 7
(2, 0, 1, 10, 15) 1.72175e11 2.44536e10 1.52217e9 4
(2, 0, 2, 10, 15) 8.27362e10 1.38827e11 2.09677e10 6
(2, 0, 3, 10, 15) 1.79564e11 4.57813e11 1.04973e11 7
(2, 5, 3, 10, 15) 2.01763e11 4.49569e11 1.06872e11 7
(3, 0, 1, 5, 10) 7.48174e11 4.17901e10 5.18114e9 6
(3, 0, 2, 5, 10) 3.63162e11 2.25463e11 5.19205e10 8
(3, 0, 3, 5, 10) 7.60572e11 6.16676e11 1.78310e11 9

Table B.3: Memory comparison of Zeilberger’s algorithm to reduction-based cre-
ative telescoping with and without construction of a certificate (in bytes)
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Tables for Example 6.15 and Example 6.16.

𝛼 RCT𝑡 RCT𝑡𝑐 BRCT𝑡 BRCT𝑡𝑐 LB order
20 2.53275e8 2.57797e8 1.42371e8 1.46826e8 20 20
30 1.04691e9 1.05593e9 4.73815e8 4.83413e8 30 30
40 3.16905e9 3.18565e9 1.31468e9 1.33395e9 40 40
50 7.69274e9 7.71999e9 3.12029e9 3.15161e9 50 50
60 1.62442e10 1.62819e10 6.24941e9 6.28674e9 60 60
70 3.15561e10 3.16084e10 1.19886e10 1.20418e10 70 70

Table B.4: Memory comparison of two reduction-based creative telescoping with
and without construction of a certificate for Example 6.15 (in bytes)

(𝑚,𝛼) RCT𝑡 RCT𝑡𝑐 BRCT𝑡 BRCT𝑡𝑐 LB order
(1,1) 2.64768e7 3.12387e7 2.64914e7 3.12548e7 1 2
(1,10) 9.91388e8 1.62603e9 8.94051e8 1.50416e9 10 11
(1,15) 2.01112e10 2.32990e10 1.33834e10 1.75427e10 15 16
(1,20) 2.23859e11 2.43209e11 1.13767e11 1.29430e11 20 21
(2,10) 1.03547e9 1.65297e9 9.12084e8 1.52683e9 10 11
(2,15) 2.70850e10 3.02579e10 1.38753e10 1.64594e10 15 16
(2,20) 2.37348e11 2.48004e11 1.29174e11 1.41685e11 20 21

Table B.5: Memory comparison of two reduction-based creative telescoping with
and without construction of a certificate for Example 6.16 (in bytes)
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Notation

The following list describes the most important mathematical notations that have
been used in this thesis. For each group, the order follows roughly the order of
first appearance in the text.

Abbreviations

gcd The greatest common divisor

min The minimum

max The maximum

𝑝 | 𝑞 A polynomial 𝑝 divides a polynomial 𝑞 over the domain
where the polynomials live

𝑝 - 𝑞 A polynomial 𝑝 does not divide a polynomial 𝑞 over the
domain where the polynomials live

log The natural logarithm

exp The exponential function

Number Sets

N, Z, Q, R, C Sets of natural, integer, rational, real, complex numbers

Q(𝑖) The Gaussian rational field

𝒟𝑅,F The set of D-finite numbers with respect to 𝑅 and F

𝒟F The set 𝒟F,F

𝒜F The set of limits of convergent algebraic sequences over F

∅ The empty set

𝒞F The set of limits of convergent C-finite sequences over F
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Operators

𝜎𝑘 The shift operator w.r.t. 𝑘 which maps 𝑟(𝑘) to 𝑟(𝑘+ 1) for
every rational function 𝑟 ∈ F(𝑘)

Δ𝑘 The difference of 𝜎𝑘 and the identity map

𝑆𝑛 The operator in the ring of linear recurrence operators
over F which satisfies 𝑆𝑛𝑟 = 𝜎𝑛(𝑟)𝑆𝑛 for all 𝑟 ∈ F.∑︀𝜌

𝑗=0 𝑝𝑗𝑆
𝑗
𝑛 A recurrence operator with polynomial coefficients 𝑝𝑗

𝐷𝑧 The derivation operator w.r.t. 𝑧 which maps a power series
or function 𝑓(𝑧) to its derivative 𝑓 ′(𝑧) = 𝑑

𝑑𝑧𝑓(𝑧)∑︀𝜌
𝑗=0 𝑝𝑗𝐷

𝑗
𝑧 A differential operator with polynomial coefficients 𝑝𝑗

Rings/Fields/Algebra

Quot(𝑅) The quotient field of the ring 𝑅

K A field of characteristic zero

F A field of characteristic zero, or the field K(𝑛) (Chapter 5),
or a subfield of C (Chapter 8)

F(𝑘) The field of univariate rational functions in 𝑘 over F

F[𝑘] The ring of univariate polynomials in 𝑘 over F

D A difference ring extension of F(𝑘)

K(𝑛, 𝑘) The field of bivariate rational functions in 𝑛, 𝑘 over K

F[𝑛]⟨𝑆𝑛⟩ The Ore algebra of linear recurrence operators with poly-
nomial coefficients w.r.t. 𝑛

K[𝑛, 𝑘] The ring of bivariate polynomials in 𝑛, 𝑘 over K

K(𝑛)[𝑘] The ring of polynomials in 𝑘 over the field K(𝑛)

𝑅 A subring of C

𝑅[[𝑧]] The ring of formal power series over 𝑅

𝑅N The ring of all sequences from N to 𝑅

F[𝑧]⟨𝐷𝑧⟩ The Ore algebra of linear differential operators with poly-
nomial coefficients wr.t. 𝑧

F̄ The algebraic closure of the field F



Notation 113

Other Symbols∑︀𝑏
𝑗=𝑎 𝑓(𝑘) The sum 𝑓(𝑎) + 𝑓(𝑎+ 1) + · · · + 𝑓(𝑏)

deg𝑘(𝑝) Degree of a polynomial 𝑝 w.r.t. 𝑘

lc𝑘(𝑝) Leading coefficient of a polynomial 𝑝 w.r.t. 𝑘

𝐴 ∖𝐵 The relative complement of a set 𝐵 with respect to a set 𝐴

𝑘!,
(︂
𝑛

𝑘

)︂
Factorial 𝑘! = 1 · 2 · 3 . . . (𝑘− 1) · 𝑘 and binomial coefficient(︀

𝑛
𝑘

)︀
= 𝑛(𝑛− 1) . . . (𝑛− 𝑘 + 1)/𝑘!

U𝑇 The union of {0} and the set of summable hypergeometric
terms that are similar to a hypergeometric term 𝑇

V𝐾 The set {𝐾𝜎𝑘(𝑟)−𝑟 | 𝑟 ∈ F(𝑘)} where 𝐾 is a shift-reduced
rational function in F(𝑘)

𝐴 ≡𝑘 𝐵 mod 𝐶𝑘 The expression 𝐴−𝐵 belongs to a set 𝐶𝑘

𝜑𝐾 The map for polynomial reduction with respect to a shift-
reduced rational function 𝐾

im(𝜑𝐾) The image space of the map 𝜑𝐾

W𝐾 The standard complement of im(𝜑𝐾)

𝐴⊕𝐵 The direct sum of two vector spaces 𝐴 and 𝐵

𝐴 ∩𝐵 The intersection of two sets 𝐴 and 𝐵

𝐴 ∪𝐵 The union of two sets 𝐴 and 𝐵

|𝒫| The number of elements of the set 𝒫

J𝜙K The Iversion bracket, namely J𝜙K equals 1 if the expres-
sion 𝜙 is true, otherwise it is 0.∏︀𝑏

𝑗=𝑎 𝑓(𝑘) The product 𝑓(𝑎)𝑓(𝑎+ 1) . . . 𝑓(𝑏)

𝑝 ∼𝑘 𝑞 A polynomial 𝑝 is shift-equivalent to a polynomial 𝑞 w.r.t. 𝑘

𝑝 ≈𝑘 𝑞 A shift-free polynomial 𝑝 is shift-related to a shift-free poly-
nomial 𝑞 w.r.t. 𝑘

𝐿(𝑇 ) The application of a recurrence operator 𝐿 to a hypergeo-
metric term 𝑇
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𝑝 ∼𝑛,𝑘 𝑞 A polynomial 𝑝 is shift-equivalent to a polynomial 𝑞 w.r.t. 𝑛
and 𝑘

|𝜉| The modulus of a complex number 𝜉

dimK(𝑛)(W𝐾) The dimension of the vector space W𝐾 over the field K(𝑛)

𝛿(𝜆,𝜇) The operator 𝜎𝛼
𝑛𝜎

𝛽
𝑘 where 𝜆, 𝜇 are coprime integers and

𝛼𝜆+ 𝛽𝜇 = 1 with |𝛼| < |𝜇| and |𝛽| < |𝜆|∑︀∞
𝑛=0 𝑎𝑛𝑧

𝑛 A power series with the coefficient sequence (𝑎𝑛)∞
𝑛=0

(𝑎𝑛)∞
𝑛=0 An infinite sequence 𝑎0, 𝑎1, 𝑎2, . . .

𝑓 ′(𝑧) The first derivative of a power series or function 𝑓(𝑧) w.r.t. 𝑧

lc(𝐿) The leading coefficient of an operator 𝐿

𝐿 · 𝑎𝑛 The application of a recurrence operator 𝐿 to an infinite
sequence (𝑎𝑛)∞

𝑛=0

𝐿 · 𝑓(𝑧) The application of a differential operator 𝐿 to a power se-
ries 𝑓

𝑓 ∘ 𝑔 The composition 𝑓(𝑔) of functions 𝑓 and 𝑔

𝐴 ⊆ 𝐵 A set 𝐴 is contained by a set 𝐵

𝜉 The complex conjugation of a complex number 𝜉

Re(𝜉) The real part of a complex number 𝜉

Im(𝜉) The imaginary part of a complex number 𝜉

𝑎𝑛 ∼ 𝑏𝑛 (𝑛 → ∞) The quotient 𝑎𝑛/𝑏𝑛 converges to 1 as 𝑛 → ∞

𝑓(𝑧) ∼ 𝑔(𝑧) (𝑧 → 𝜁) The quotient 𝑓(𝑧)/𝑔(𝑧) converges to 1 as 𝑧 approaches 𝜁

[𝑧𝑛]𝑓(𝑧) The coefficient of 𝑧𝑛 in a power series 𝑓(𝑧) ∈ F[[𝑧]]

𝑓 (𝑘)(𝑧) The 𝑘th derivative of a power series or function 𝑓(𝑧) w.r.t. 𝑧
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Abel’s theorem, 4
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apparent singularity, 69
Apéry’s constant, 75
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asymptotically equivalent, 76

Basic Abelian theorem, 76
bound, see order bound, 58
BoundReductionCT (ShiftReductionCT),
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C-finite sequence, 79, 87
Cauchy product, 67
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closure properties, 69–71
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computable, 74, 82
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D-finite
function, 1, 68, 81, 82, 87
number, 5, 73, 74, 80–87
power series, see D-finite function
sequence, see P-recursive sequence

decomposition
additive, 13
multiplicative, 12
shift-coprime, 35
shift-homogeneous, 50

degree, 9
derivation operator, 68
desingularization, 69
difference

field, 9, 42
ring, 9, 42

differential operator, 68
discrete residual form, see residual form
dispersion, 35

echelon basis, 19–20
Euler’s

constant, 75
number, 74
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exponential function, 10

factorial term, 10, 43
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function
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Gamma, 75
Riemann zeta, 4

G-function, 4
Gamma function, 75
generating function, 67
generic situation, 59
Gosper (SumTools[Hypergeometric]), 25,

94
Gosper’s algorithm, 3, 10, 14, 25, 94

Hadamard product, 68
Hermite reduction, 27, 41
holonomic constant, 4, 73, 81
hyperexponential function, 17, 27
hypergeometric

identity, 2
summability, see summable
summable, see summable
summation, 2
term, 9, 42

imaginary unit, 5, 79, 80, 86
indefinite summation, 10
integer-linear, 43, 50, 54
IsSummable (ShiftReductionCT), 25, 94

kernel, 12
kernel reduction, 35

leading coefficient, 9, 68
Linux computer, 25, 47, 61, 101
lower bound, 62
LowerBound, 61

map for polynomial reduction, 17, 19
Maple, 3, 24, 47, 61, 91
Mathematica, 3
memory requirement, 24, 47, 61, 101
minimal telescoper, see also telescoper
modified Abramov-Petkovšek reduction,

17–25
ModifiedAbramovPetkovsekReduction

(ShiftReductionCT), 25, 93
multiple zeta values, 4

multiplicative decomposition, 12

number
algebraic, 4, 75–80, 86
computable, 74, 82
D-finite, 5, 73, 74, 86, 87

numerical evaluation, 71, 74
NumGfun, 71

operator
derivation, 68
differential, 68
recurrence, 43, 68
shift, 42, 68

order, 48, 62, 68, 102
order bound, 57–61

Abramov-Le , 61
Apagodu-Zeilberger , 59
lower, 58
upper, 57

Ore algebra, 68

P-recursive sequence, 1, 68
period, 4
polynomial reduction, 19–21
proper term, 43, 59
Pythagoras’ constant, 75

quotient field, 70

rational
normal form, 28–29
summable, 10, 11

recurrence operator, 43, 68
reduction

Abramov-Petkovšek , 13–15, 23, 25
kernel, 35
modified Abramov-Petkovšek , 17–

25
polynomial, 19–21
shell, 16

reduction-based, 3, 45, 48, 58, 62, 63
ReductionCT (ShiftReductionCT), 48, 61,
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residual form, 18, 29, 30, 33, 37, 52
Riemann zeta function, 4
runtime, see timing

sequence, 67
algebraic, 75, 78, 87
C-finite, 79, 87
P-recursive, 1, 68

shell, 12
shell reduction, 16
shift operator, 42, 68
shift-

coprime, 35
coprime decomposition, 35
equivalent, 28, 50
free, 11, 33
homogeneous, 50
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homogeneous decomposition, 50
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reduced, 11
related, 29

ShiftReductionCT, 24, 47, 61, 91–
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ModifiedAbramovPetkovsekReduction,
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ShiftMAPReduction, 97
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TranslateDRF, 94
VerifyMAPReduction, 93
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52

similar, 10
singularity, 69, 86
square-free, 76, 79
standard complement, 18, 19
strongly coprime, 15

SumDecomposition (SumTools[Hyper-
geometric]), 25, 92

summability, see summable
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SumTools[Hypergeometric]

Gosper, 25, 94, 101
LowerBound, 98
SumDecomposition, 25, 92, 101
Zeilberger, 48, 97, 101
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